$\overline{X}_1 = \underline{\hspace{1cm}} S_{x_1} = \underline{\hspace{1cm}} \alpha = \underline{\hspace{1cm}} N_1 = \underline{\hspace{1cm}} N_2 = \underline{\hspace{1cm}}$	
$\overline{X}_2 = \underline{\hspace{1cm}} S_{x_2} = \underline{\hspace{1cm}}$	
Subpopulation #1	
Subpopulation #2	
Quantitative Variable	
Step I Identify Procedure:	
We want to test the evidence against the claim that the mean for	in the population of
() is equal to the mean for	
of().	
The null and alternative hypotheses are:	
$H_0: \mu_1 = \mu_2$ $H_A: \mu_1 \bigoplus \mu_2$	
Step II Check Conditions:	
*: Both were conducted to insure populations were equally likely to be selected.	every member of BOTH
* Sampling Distribution: The sampling distribution of all possible sample difference of means shape because the sample was of sufficient size, over 40 (per the	
*: The lack of replacement is not a problem in this case because the number of su population is more than times the sample size. The two samples are	ubjects in the
Step III Perform Procedure:	
T-statistic = per EXCEL	
$P-value=P(\overline{X}_1-\overline{X}_2)$ $\mu_1=\mu_2=$ % compared to significance levels	vel () of%
Step IV Interpretation:	
We fail to reject the null hypothesis at the% significance level (). The P-value of% sh	ows that an
observed diffence in the sample means as extreme as () would be expected to occur	% of the time,
and thus mere chance could explain the difference between the two sample means even if no true difference exist	
means ($\mu_1 = \mu_2$). We cannot say that the mean for in the population of	
() is not equal to the mean for in the population of	().
OR	
We reject the null hypothesis at the $__$ % significance level ($__$). The P-value of $__$ % falls (<code>just bel</code>	ow OR well below)
the significance level, thus there is (moderate OR strong) evidence that the alternative hypothesis is true, t	he mean for
in the population of () is	than the mean for
in the population of () .	