BASIC PROBABILITY QUESTIONS

#1a P(A) * P(B) #1b Events must be independent.

#2 $P(A) + P(B) - P(A \cap B)$

#3 Sample Set

#4 $0 \le P(Event) \le 1$

#5 1

#6 False. It's the opposite. Outcomes are the possible results for any given event.

#7 "and" is the same as ∩. In probability notation, it means that BOTH events must occur

#8 "or" is the same as U. In probability notation, it means that BOTH events must occur

PROBABILITY CALCULATIONS USING NORMAL CURVES

For probabilities using the population distribution:

Population mean $(\mu) = 500$ and

Population Standard Deviation (σ) = 25

For probabilities using a sampling distribution:

Any samples will also have a mean of 500.

 $\overline{\mathbf{X}} = 500$

 $S_x = \frac{25}{\sqrt{n}}$ n = sample size (number of data items)

Standard Deviations For Samples Are Lower, Must Divide **O** By

 \sqrt{n}

#9 Notice no mention of sample or sample size. This probability calculation involves the population distribution.

P(X < 477) = 17.9%

Use the formula Norm.Dist with inputs discussed above. BIG NOTE: Last input is just "true".

$$P(X > 535) = 1 - P(X < 535)$$

Note Excel only calculates probabilities from a value of X to the negative infinity (to the left).

#11 Now notice here we are talking about an average (mean) of 498 or more for a five day period (n = 5).

$$P(\overline{X} > 498) = 1 - P(\overline{X} < 498) = 1 - 42.9\% = 57.10\%$$

Same mean of 500 but standard deviation will be 25 divided by the square root of n which equals five.

$$\frac{25}{\sqrt{5}} = 11.18 = S_X$$

Now just use these inputs in Norm.Dist formula.

#12 Proportion word is the same as probability in this context. Notice no mention of sample so we use population distribution inputs.

First find
$$P(X < 510) =$$

Then find
$$P(X < 480) =$$

$$P(480 < X < 510) = 65.5\% - 21.2\% = 44.3\%$$

#13 Notice this question asks for "mean sales" over a 30-day month. That ques us to use a sampling distribution.

The population standard deviation of 25 will have to be divided by square root of 30.

$$S_x = \frac{25}{\sqrt{30}} = 4.56$$

Now just use Norm. Dist with X of 494, mean of 500, standard deviation of 4.56.

$$P(\bar{X} < 494) = 9.4\%$$

#14 "Randomly selecting 50 days" is describing a sample. Notice it's proving a sample size of 50.

$$S_{x} = \frac{25}{\sqrt{50}} = 3.54$$
 $P(499 < \overline{X} < 503) = P(\overline{X} < 503) - P(\overline{X} < 499) = 80.2\% - 38.9\% = 41.3\%$

#15 See Class Notes: Second semester I'll show you how to draw normal probability distributions using Excel.

#16 Since the events ("state of the economy" and "more competition surfaces") are independent, we can use the multiplication rule to find the probabilities.

16a-d.

16e. Now multiply each probability by the value of its outcome.

$P(Boom \cap Competition) = .65 * .25) =$	0.1625	X	\$30	=	\$4.88
$P(Boom \cap \textit{No Competition}) = .65 * .75) =$	0.4875	x	\$70	=	\$34.13
$P(Recession \cap \textit{Competition}) = .35 * .25) =$	0.0875	x	\$10	=	\$0.88
P(Recession No Competition) = .35 * .75) =	0.2625	x	\$40	=	\$10.50 Now just add the 4 components.

Notice they sum to 100%!!

This is just a a fictitious model. Do not run out and buy Facebook.

\$50.38

EXPECTED VALUE OF FACEBOOK