BASIC PROBABILITY QUESTIONS

```
\#1a \(\quad P(A) * P(B) \quad\) \#1b \(\quad\) Events must be independent.
    P(A)+P(B)-P(A\capB)
    Sample Set
        0 \leqP(Event )\leq1
            1
    False. It's the opposite. Outcomes are the possible results for any given event.
    "and" is the same as \cap. In probability notation,it means that BOTH events must occur
    "or" is the same as U. In probability notation, it means that BOTH events must occur
```


PROBABILITY CALCULATIONS USING NORMAL CURVES

For probabilities using the population distribution:
Population mean $(\mu)=500 \quad$ and Population Standard Deviation $(\sigma)=25$

For probabilities using a sampling distribution:
Standard Deviations For Samples Are Lower, Must Divide $\boldsymbol{\sigma}$ By
Any samples will also have a mean of 500 .

$$
\bar{X}=500 \quad S_{x}=\frac{25}{\sqrt{n}} n=\text { sample size (number of data items) }
$$

Notice no mention of sample or sample size. This probability calculation involves the population distribution.

$$
P(X<477)=
$$

17.9\%

Use the formula Norm.Dist with inputs discussed above.
BIG NOTE: Last input is just "true".
\#10 Again notice no mention of sample or sample size. This probability calculation involves the population distribution.

$$
P(X>535)=1-P(X<535) \quad \text { Note Excel only calculates probabilities from a value of } X \text { to the negative infinity (to the left). }
$$

1 - $91.9 \%=8.1 \%$

Now notice here we are talking about an average (mean) of 498 or more for a five day period ($\mathrm{n}=5$).

$$
P(\bar{X}>498)=1-P(\bar{X}<498)=1-\quad 42.9 \%=57.10 \%
$$

Same mean of 500 but standard deviation will be 25 divided by the square root of n which equals five. $\quad \frac{25}{\sqrt{5}}=11.18=S_{x}$
Now just use these inputs in Norm.Dist formula.
\#12 Proportion word is the same as probability in this context. Notice no mention of sample so we use population distribution inputs.

$$
\begin{array}{lcc}
P(480<X<510) & \text { First find } P(X<510)= & 65.5 \% \\
P(480<X<510)= & 65.5 \%-21.2 \%=44.3 \% &
\end{array}
$$

Notice this question asks for "mean sales" over a 30-day month. That ques us to use a sampling distribution.
The population standard deviation of 25 will have to be divided by square root of 30 .

$$
S_{x}=\frac{25}{\sqrt{30}}=
$$

Now just use Norm.Dist with X of 494, mean of 500, standard deviation of 4.56.

$$
P(\bar{X}<494)=9.4 \%
$$

\#14 "Randomly selecting 50 days" is describing a sample. Notice it's proving a sample size of 50.

$$
\begin{array}{r}
\mathrm{S}_{\mathrm{x}}=\frac{25}{\sqrt{50}}=3.54 \quad \mathrm{P}(499<\bar{X}<503)=\quad P(\bar{X}<503)-\quad \mathrm{P}(\overline{\mathrm{X}}<499)= \\
80.2 \%-38.9 \%=41.3 \%
\end{array}
$$

\#16 Since the events ("state of the economy" and "more competition surfaces") are independent, we can use the multiplication rule to find the probabilities.

16a-d.

$\mathbf{P}($ Boom \cap Competition $)=.65 * .25)=$	0.1625
$P($ Boom \cap No Competition $)=.65 * .75)=$	0.4875
$P($ Recession \cap Competition $)=.35 * .25)=$	0.0875
$P($ Recession No Competition $)=.35 * .75)=$	0.2625

Notice they sum to 100% !!

16e. Now multiply each probability by the value of its outcome.

\mathbf{X}	$\$ 30$	$=$	$\$ 4.88$
\mathbf{X}	$\$ 70$	$=$	$\$ 34.13$
\mathbf{X}	$\$ 10$	$=$	$\$ 0.88$
\mathbf{X}	$\$ 40$	$=$	$\$ 10.50$
EXPECTED VALUE OF FACEBOOK		$\$ 50.38$	

This is just a a fictitious model. Do not run out and buy Facebook.

