BASIC PROBABILITY QUESTIONS

#1a P(A) * P(B) #1b Events must be independent.

#2 $P(A) + P(B) - P(A \cap B)$

#3 Sample Set

#4 $0 \le P(Event) \le 1$

#5 1

#7

#8

#6 False. It's the opposite. Outcomes are the possible results for any given event.

"and" is the same as \cap . In probability notation, it means that BOTH events must occur

"or" is the same as ∪. In probability notation, it means that BOTH events must occur

PROBABILITY CALCULATIONS USING NORMAL CURVES

For probabilities using the population distribution:

Population mean $(\mu) = 200$ and

Population Standard Deviation (σ) = 20

For probabilities using a sampling distribution:

Any samples will also have a mean of 200.

$$\overline{X} = 200$$

Standard Deviations For Samples Are Lower, Must Divide $oldsymbol{\sigma}$ By \sqrt{n}

$$S_x = \frac{20}{\sqrt{n}}$$
 n = sample size (number of data items)

#9 Notice no mention of sample or sample size. This probability calculation involves the population distribution.

P(X < 227) = 91.1%

,) Use the formula Norm. Dist with inputs discussed above. BIG NOTE: Last input is just "true".

#10 Again notice no mention of sample or sample size. This probability calculation involves the population distribution.

$$P(X > 220) = 1 - P(X < 220)$$

Note Excel only calculates probabilities from a value of X to the negative infinity (to the left).

#11 Now notice here we are talking about an average (mean) of 498 or more for a five day period (n = 5).

$$P(\overline{X} > 204) = 1 - P(\overline{X} < 204) = 1 - 70.2\% = 29.8\%$$

Same mean of 200 but standard deviation will be 20 divided by the square root of n which equals seven.

$$\frac{20}{\sqrt{7}} = 7.5593 = S_X$$

Now just use these inputs in Norm.Dist formula.

#12 Proportion word is the same as probability in this context. Notice no mention of sample so we use population distribution inputs.

First find
$$P(X < 208) =$$

Then find
$$P(X < 185) =$$

$$P(185 < X < 208) = 65.5\% - 22.7\% = 42.8\%$$

Notice this question asks for "mean sales" over a 30-day month. That ques us to use a sampling distribution. #13

The population standard deviation of 20 will have to be divided by square root of 30.

$$S_x = \frac{20}{\sqrt{30}} = 3.65$$

Now just use Norm. Dist with X of 197, mean of 200, standard deviation of 3.65.

$$P(\overline{X} < 197) = 20.6\%$$

"Randomly selecting 100 days" is describing a sample. Notice it's proving a sample size of 100. #14

$$S_x = \frac{20}{\sqrt{100}} = 2.00$$

$$P(199 < \overline{X} < 202) =$$

$$S_{x} = \frac{20}{\sqrt{100}} = 2.00$$
 $P(199 < \overline{X} < 202) = P(\overline{X} < 202) - P(\overline{X} < 199) =$

53.3%

#15 Since the events ("state of the economy" and "more competition surfaces") are independent, we can use the multiplication rule to find the probabilities.

16a-d.

16e. Now multiply each probability by the value of its outcome.

Notice they sum to 100%!!		EXPECTED VALUE OF FACEBOOK			\$50.90	
P(Recession No Competition) = .15 * .60	0.09	x	\$30	=	\$2.70	Now just add the 4 components.
$P(Recession \cap Competition) = .15 * .40$	0.06	X	\$10	=	\$0.60	
$P(Boom \cap No\ Competition) = .85 * .60)$	= 0.51	x	\$80	=	\$40.80	
$P(Boom \cap Competition) = .85 * .40) =$	0.3400	X	\$20	=	\$6.80	

This is just a a fictitious model. Do not run out and buy Facebook.