DATA		DATA ANALYSIS Practice Test #1					
\$21	#1						
\$32		Create a histogram using a bin width of 20 (\$Millions).					
\$42							
\$46		Step One: Create A List of Bin Upper Limits. Use the upper bound for each bin. For instance, use 20 for the bin \$0-\$20; 40 for the bin \$21-\$40 etc.					
\$47		Note that you do not need to worry about decimals as all values have been rounded to the nearest integer.					
\$55		Note that Excel will always add one additional bin to account for values above the last bin limit listed. For instance, it will add a bin for "more than 100" below.					
\$58		20					
\$61		40					
\$63		60					
\$64		80					
\$69		100					
\$71							
\$73		Step Two: Create a Frequency Table & draft Histogram using the Data Analysis Toolpak.					
\$76		Be sure to check off the "Chart					
\$79							
\$80		Bin Frequency					
\$80							
\$83		40 2 Histogram					
\$88		60 5 15 T					
\$89							
		80 10 100 3 More 0					

Step Three: Now perform the following modifications.

A. Delete the "frequency" legend.

0

20

B. Change generic "Bin" to name of variable being measured on the X-axis ("Family Net Worth Year-end 2008")

C. Add the Unit of Measure to the horizontal axis (X-axis) - "\$Millions"

40

60

Bin

D. Change the bin labels from a single upper limit value to reflect full range of bin, and add \$. (40 becomes \$21-\$40).

100

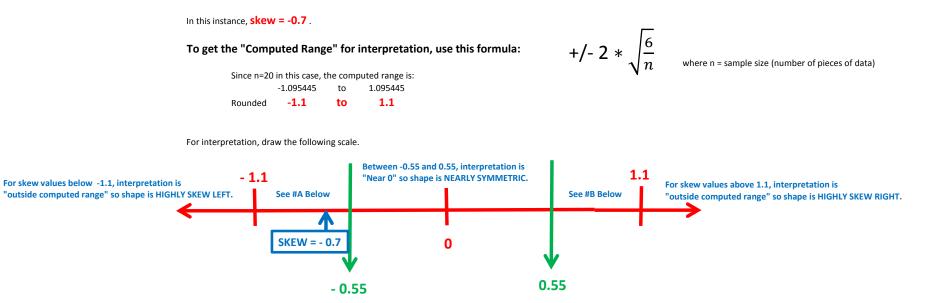
More

E. Change generic chart title "Histogram" to describe the population ("Ameritrade High Worth Clients")

80

F. Adjust the bars so there is no gap between them.

Bin	Frequency
\$0-\$20	0
\$21-\$40	2
\$41-60	5
\$61-\$80	10
\$81-100	3
Over \$100	0


#2-#3

For these questions, you need to use the "Descrptive Statistics" in the Data Analysis Toolpak; and the formula QUARTILE.EXC.

Be sure to check the "Summary Statistics" box.	Column1			
Round all figures to the nearest tenth.	Mean	63.9		
	Standard Error	4.2		
	Median	66.5		
Know that mean and median measure central tendancy.	Mode	80.0		
Know that standard deviation, interquartile range (IQR),	Standard Deviation	18.8	Q1 =	49
and range measure spread.	Sample Variance	352.3		
	Kurtosis	-0.1	Q3 =	79.75
	Skewness	-0.7		
	Range	68.0	IQR = Q3 - Q1	30.75
	Minimum	21.0		
	Maximum	89.0		
	Sum	1277.0		
	Count	20.0		

#4 Skew statistics measure the shape of a distribution.

Use the skew statistic from the Descriptive Statistics. Then you will need to calculate the computed range to interprete the skew statistic value.

Note: -0.55 is halfway bewteen 0 and -1.1; while .55 is halfway between 0 and 1.1.

Don't Be Intimidated, Remember: You are just plotting numbers on a number line.

#A Between, - 1.1 and -0.5, interpretation is "within the computed range" and shape slightly skew left.

#B Between, **1.1** and **0.5**, interpretation is "within the computed range" and shape slightly skew right.

NOTE: Negative skew values indicate shape of distribution is skew left.

NOTE: Positive skew values indicate shape of distribution is skew right.

In this case, SKEW = - 0.7 which places it inside the "computed range of -1.1 to 1.1", and distribution shape is" slightly skew left"

#5	#5 To find outliers using the "Standard Deviation Method", first get the standard deviation and mean from the Descriptive Statistics above. In this case, the standard deviation is \$18.8 (millions), and the mean is 63.9. Multiplying 18.8 times 2 provides the value you will add and subtract from the mean. In this case, that's 37.6.								
	Just add this product of 37.6 to the mean. That gives you the upper limit of where outliers start. Upper Limit = 63.9 + 37.6 = 101.5 Any value above this number is designated an outlier by this method.								
	Just subtract this product of 37.6 from the mean. That gives you the lower limit of where outliers start. Any value below this number is designated an outlier by this method. Lower Limit = 63.9 - 37.6 = 26.3								
	Note: Some problems may ask you to multiply the standard deviation by 3, but the calcualtions will otherwise be the same. 2 or 3 will always be provided in the question.								
	o find outliers using the "IQR Method", first get the IQR, median, Q1 and Q3 from the Descriptive Statistics above.								
In this case, the IQR is \$30.8 (millions), the median is 66.5, Q1 is 49, and Q3 is 79.8.									
	Multiplying the IQR times 1.5 provides the value you will add to the third quartile (Q3), and subtract from the first quartile (Q1). In this case, 1.5 times the IQR of 30.8 equals 46.2								
	Just add this product of 46.2 to Q3. That gives you the upper limit of where outliers start. Upper Limit = 79.8 + 46.2 = 126 Any value above this number is designated an outlier by this method.								
	Just subtract this product of 46.2 from Q1. That gives you the lower limit of where outliers start. Lower Limit = 49 - 46.2 = 2.8								

#6 Just remember the the following connections.

For skew distributions, median is the best measure of central tendancy (center for short); IQR and range are the best measures of spread; and IQR Method is best to determine outliers.

For symmetric distributions, mean is the best measure of central tendancy (center for short); standard deviation is the best measure of spread; and Standard Deviation Method is best to determine outliers.

ANSWERS: MEDIAN; IQR and Range; IQR METHOD

#7 Standardized Test Scores have no zero value but "differences" are consistent so it is "INTERVAL"

Number of Siblings in a Family has a zero value and "differences" are consistent so it is "RATIO"

Ranking system reflects an ordering of history knowledge but lacks a zero and "differences" between values do not have meaning so it is "ORDINAL"

These variables are categorical so they are reported in a "NOMINAL" scale.

#8 See #4 above for more explanation.

NOTE THAT THE FORMULA DETERMINING COMPUTED RANGE MUST BE DONE SEPARATELY FOR EACH PROBLEM BECAUSE THE SAMPLE SIZE CHANGES.

r -		Calculated Value	Computed Range	SKEW	Interpretation
+/- 2 * $\sqrt{\frac{6}{n}}$	8a.	1.633	-1.6 to 1.6	-1.3	Inside the computed range, so SLIGHTLY SKEW LEFT
\sqrt{n}	8b.	0.6999	-0.7 to 0.7	0.7	Outside the Computed Range; HIGHLY (or Slightly OK) SKEW RIGHT
	8c.	0.8165	-0.8 to 0.8	0.3	Near zero so NEARLY SYMMETRIC

You will be provided the formula for the final.

#9 - #12 BONUS QUESTIONS THAT WE WILL REVIEW IN CLASS.