X = \qquad $S_{x}=$ \qquad $\mu_{0}=$ \qquad $\alpha=$ \qquad \%
n = \qquad

Population

Quantitative Variable

Step I Identify Procedure:

We want to test the evidence against the claim that the mean for \qquad in the population of \qquad 1) is equal to \qquad (μ_{0}).

The null and alternative hypotheses are:

$$
H_{0}: \mu=
$$

Step II Check Conditions:

* \qquad : A \qquad
\qquad was conducted to insure every member of the population was equally likely to be selected.
* \qquad Sampling Distribution: The sampling distribution of all possible sample means has an approximately
\qquad shape because the sample was of sufficient size, over 30 (per the \qquad Theorem).
* \qquad : The lack of replacement is not a problem in this case because the number of subjects in the
population is more than \qquad times the sample size.

Step III Perform Procedure: Sketch the Sampling Distribution on the back of this page, and shade the P-value. Make it big and easy to read.

Sampling Distribution: Mean = \qquad Standard Deviation $=$ \qquad Shape: Approximately \qquad
t-statistic =
$\frac{\bar{X}-\mu_{0}}{\frac{S_{x}}{\sqrt{n}}}$
$=$ \qquad

Step IV Interpretation:

We fail to reject the null hypothesis at the \qquad \% significance level \qquad . The P-value of \qquad \% shows that an observed sample mean as extreme as \qquad would be expected to occur \qquad \% of the time, and thus mere chance could explain the difference between the sample mean and the hypothesized population mean. We cannot say that the mean for \qquad in the population of \qquad is not equal to the reported mean of \qquad (μ_{0}).

OR

We reject the null hypothesis at the \qquad \% significance level (\qquad . The P-value of \qquad \% falls (just below OR well below) the significance level, thus there is (moderate OR strong) evidence that the alternative hypothesis is true, \qquad (___) is \qquad than \qquad _.

