		µ0	u	70	··· =
Population	_				
Quantitative Va	riable				
Step I Identify Pro	ocedure:				
We want to test the evider	nce against the claim	n that the mean for			
n the population of			() is equa	l to	(μ₀).
The null and alternative hy	potheses are:				
	н	ο: μ =	-		
	н	μ	-		
Step II Check Cond	ditions:				
*		A	was	conducted	to insure every member of the
population was equal	lly likely to be select	ted.			
*	Sampling Distributio	n: The sampling distrib	ution of all possible sa	mple means	s has an approximately
sh	hape because the sam	mple was of sufficient s	ize, over 30 (per the		Theorem).
*	· The lack of	replacement is not a p	roblom in this case her	ouse the n	under of subjects in the
population is more tha	The lack of	sample size.	ioblem in this case bet	ause the ht	mber of subjects in the
Step III Perform P	rocedure: sk	etch the Sampling Distribu	ution on the back of this	page, and sha	ade the P-value. Make it big and eas
Sampling Distribution: Me	ean =	Standard Deviation	=	Shape: Ap	proximately
t-statistic =	$\frac{\overline{X} - \mu_0}{\frac{S_x}{\sqrt{n}}}$	-	=		
P-Value = P(X)	µ=_) =	% compared to	the Signific	ance Level () of%
P-Value = P(X)	μ = _ ntion:) =	% compared to	the Signific	ance Level () of%
P-Value = P(X) Step IV Interpreta	tion: $\mu = $) =	% compared to	the Signific	ance Level () of%
P-Value = P(X) Step IV Interpreta We fail to reject the null hy observed sample mean as hus mere chance could ex	μ = _ ntion: ypothesis at the extreme as splain the difference) = % significance lev () would b between the sample m	% compared to rel (). The P-valu e expected to occur ean and the hypothesi	the Signific	ance Level () of% % shows that an % of the time, and ;ion mean. We cannot say
P-Value = P(X Step IV Interpreta We fail to reject the null hy observed sample mean as hus mere chance could ex hat the mean for	μ = _ ntion: ypothesis at the extreme as splain the difference) = % significance lev () would b between the sample m in the	% compared to rel (). The P-valu e expected to occur ean and the hypothesi e population of	the Signific	ance Level () of% % shows that an % of the time, and tion mean. We cannot say
P-Value = P(X Step IV Interpreta Step IV Interpreta We fail to reject the null hy observed sample mean as hus mere chance could ex hat the mean for s not equal to the reported	μ = _ ntion: ypothesis at the extreme as splain the difference d mean of) = % significance lev () would b between the sample m in the (μ ₀).	% compared to rel (). The P-valu re expected to occur ean and the hypothesi e population of	the Signific	ance Level () of% % shows that an % of the time, and tion mean. We cannot say
P-Value = P(X) Step IV Interpreta We fail to reject the null hy observed sample mean as thus mere chance could ex that the mean for s not equal to the reporter OR	μ = _ ntion: ypothesis at the extreme as cplain the difference d mean of) = % significance lev () would b between the sample m in the (μ ₀).	% compared to rel (). The P-valu re expected to occur ean and the hypothesi e population of	the Signific	ance Level () of% % shows that an % of the time, and tion mean. We cannot say
P-Value = P(X) Step IV Interpreta We fail to reject the null hy observed sample mean as thus mere chance could ex that the mean for s not equal to the reported OR Ne reject the null hypothe	μ = _ ntion: ypothesis at the extreme as plain the difference d mean of esis at the%) = % significance lev () would b between the sample m in the in the in the significance level ().	% compared to rel (). The P-valu e expected to occur ean and the hypothesi e population of _). The P-value of	the Signific e of ized popula	ance Level () of% % shows that an % of the time, and tion mean. We cannot say
P-Value = P(X Step IV Interpreta We fail to reject the null hy observed sample mean as hus mere chance could ex hat the mean for s not equal to the reported OR Ve reject the null hypothe he significance level thus	μ = ntion: ypothesis at the extreme as splain the difference d mean of% esis at the%) = % significance lev () would b between the sample m in the in the in the in the in the in the in the in the in the in the 	% compared to rel (). The P-valu re expected to occur ean and the hypothesi e population of _). The P-value of	the Signific e of ized popula % fall	ance Level () of% % shows that an % of the time, and tion mean. We cannot say s (just below OR well belo