

Functions

Interpreting Functions F-IF

Understand the concept of a function and use function notation

- Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x . The graph of f is the graph of the equation $y = f(x)$.
- Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
- Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. *For example, the Fibonacci sequence is defined recursively by $f(0) = f(1) = 1$, $f(n+1) = f(n) + f(n-1)$ for $n \geq 1$.*

Interpret functions that arise in applications in terms of the context

- For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. *Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.**
- Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.**
- Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.★

Analyze functions using different representations

- Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.★
 - Graph linear and quadratic functions and show intercepts, maxima, and minima.
 - Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
 - Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.
 - (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.
 - Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
- Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
 - Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
 - Use the properties of exponents to interpret expressions for exponential functions. *For example, identify percent rate of change in functions such as $y = (1.02)^t$, $y = (0.97)^t$, $y = (1.01)^{12t}$, $y = (1.2)^{t/10}$, and classify them as representing exponential growth or decay.*
- Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). *For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.*

10. Demonstrate an understanding of functions and equations defined parametrically and graph them.
(CA (Standard Math Analysis – 7.0)

Building Functions F-BF

Build a function that models a relationship between two quantities

1. Write a function that describes a relationship between two quantities.*
 - a. Determine an explicit expression, a recursive process, or steps for calculation from a context.
 - b. Combine standard function types using arithmetic operations. *For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.*
 - c. (+) Compose functions. *For example, if $T(y)$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $T(h(t))$ is the temperature at the location of the weather balloon as a function of time.*
2. Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.*

Build new functions from existing functions

3. Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $k f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. *Include recognizing even and odd functions from their graphs and algebraic expressions for them.*

3.1 Solve problems involving functional concepts, such as composition, defining the inverse function and performing arithmetic operations on functions. (CA Standard Algebra II – 24.0)

4. Find inverse functions.
 1. Solve an equation of the form $f(x) = c$ for a simple function f that has an inverse and write an expression for the inverse. *For example, $f(x) = 2x^3$ or $f(x) = (x+1)/(x-1)$ for $x \neq 1$.*
 2. (+) Verify by composition that one function is the inverse of another.
 3. (+) Read values of an inverse function from a graph or a table, given that the function has an inverse.
 4. (+) Produce an invertible function from a non-invertible function by restricting the domain.
5. (+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.

Linear, Quadratic, and Exponential Models★ F-LE

Construct and compare linear, quadratic, and exponential models and solve problems

1. Distinguish between situations that can be modeled with linear functions and with exponential functions.
 - a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.
 - b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
 - c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
2. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).
3. Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.
4. For exponential models, express as a logarithm the solution to $ab^{ct} = d$ where a , c , and d are numbers and the base b is 2, 10, or e ; evaluate the logarithm using technology.

Interpret expressions for functions in terms of the situation they model

5. Interpret the parameters in a linear or exponential function in terms of a context.
6. ***Apply quadratic equations to physical problems, such as the motion of an object under the force of gravity.*** (CA Standard Algebra I – 23.0)