Mathematics | High School – Modeling

Modeling links classroom mathematics and statistics to everyday life, work, and decision-making. Modeling is the process of choosing and using appropriate mathematics and statistics to analyze empirical situations, to understand them better, and to improve decisions. Quantities and their relationships in physical, economic, public policy, social, and everyday situations can be modeled using mathematical and statistical methods. When making mathematical models, technology is valuable for varying assumptions, exploring consequences, and comparing predictions with data.

A model can be very simple, such as writing total cost as a product of unit price and number bought, or using a geometric shape to describe a physical object like a coin. Even such simple models involve making choices. It is up to us whether to model a coin as a three-dimensional cylinder, or whether a two-dimensional disk works well enough for our purposes. Other situations—modeling a delivery route, a production schedule, or a comparison of loan amortizations—need more elaborate models that use other tools from the mathematical sciences. Real-world situations are not organized and labeled for analysis; formulating tractable models, representing such models, and analyzing them is appropriately a creative process.

Like every such process, this depends on acquired expertise as well as creativity.

Some examples of such situations might include:

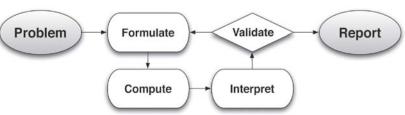
- Estimating how much water and food is needed for emergency relief in a devastated city of 3 million people, and how it might be distributed.
- Planning a table tennis tournament for 7 players at a club with 4 tables, where each player plays against each other player.
- Designing the layout of the stalls in a school fair so as to raise as much money as possible.
- Analyzing stopping distance for a car.
- Modeling savings account balance, bacterial colony growth, or investment growth.
- Engaging in critical path analysis, e.g., applied to turnaround of an aircraft at an airport.
- Analyzing risk in situations such as extreme sports, pandemics, and terrorism.
- Relating population statistics to individual predictions.

In situations like these, the models devised depend on a number of factors: How precise an answer do we want or need? What aspects of the situation do we most need to understand, control, or optimize? What resources of time and tools do we have? The range of models that we can create and analyze is also constrained by the limitations of our mathematical, statistical, and technical skills, and our ability to recognize significant variables and relationships among them. Diagrams of various kinds, spreadsheets and other technology, and algebra are powerful tools for understanding and solving problems drawn from different types of real-world situations.

One of the insights provided by mathematical modeling is that essentially the same mathematical or statistical structure can sometimes model seemingly different situations. Models can also shed light on the mathematical structures themselves,

for example, as when a model of bacterial growth makes more vivid the explosive growth of the exponential function.

The basic modeling cycle is summarized in the diagram. It involves (1) identifying variables in the situation and selecting those that represent essential features, (2) formulating a model by



creating and selecting geometric, graphical, tabular, algebraic, or statistical representations that describe relationships between the variables, (3) analyzing and performing operations on these relationships to draw conclusions, (4) interpreting the results of the mathematics in terms of the original situation, (5) validating the conclusions by comparing them with the situation, and then either improving the model or, if it is acceptable, (6) reporting on the conclusions and the reasoning behind them. Choices, assumptions, and approximations are present throughout this cycle.

In descriptive modeling, a model simply describes the phenomena or summarizes them in a compact form. Graphs of observations are a familiar descriptive model— for example, graphs of global temperature and atmospheric CO2 over time.

Analytic modeling seeks to explain data on the basis of deeper theoretical ideas, albeit with parameters that are empirically based; for example, exponential growth of bacterial colonies (until cut-off mechanisms such as pollution or starvation intervene) follows from a constant reproduction rate. Functions are an important tool for analyzing such problems.

Graphing utilities, spreadsheets, computer algebra systems, and dynamic geometry software are powerful tools that can be used to model purely mathematical phenomena (e.g., the behavior of polynomials) as well as physical phenomena.

Modeling Standards Modeling is best interpreted not as a collection of isolated topics but rather in relation to other standards. Making mathematical models is a Standard for Mathematical Practice, and specific modeling standards appear throughout the high school standards indicated by a star symbol (★).

Statistics and Probability Overview

Interpreting Categorical and Quantitative Data

- Summarize, represent, and interpret data on a single count or measurement variable
- Summarize, represent, and interpret data on two categorical and quantitative variables
- Interpret linear models

Making Inferences and Justifying Conclusions

- Understand and evaluate random processes underlying statistical experiments
- Make inferences and justify conclusions from sample surveys, experiments and observational studies

Conditional Probability and the Rules of Probability

- Understand independence and conditional probability and use them to interpret data
- Use the rules of probability to compute probabilities of compound events in a uniform probability model

Using Probability to Make Decisions

- Calculate expected values and use them to solve problems
- Use probability to evaluate outcomes of decisions

Mathematical Practices

- 1. Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- 8. Look for and express regularity in repeated reasoning.

Statistics and Probability

Interpreting Categorical and Quantitative Data

S-ID

Summarize, represent, and interpret data on a single count or measurement variable

- 1. Represent data with plots on the real number line (dot plots, histograms, and box plots).
- 2. Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.
- 3. Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).
- 4. Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.

Summarize, represent, and interpret data on two categorical and quantitative variables

- Summarize categorical data for two categories in two-way frequency tables. Interpret relative
 frequencies in the context of the data (including joint, marginal, and conditional relative frequencies).
 Recognize possible associations and trends in the data.
- Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.
 - a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.
 - b. Informally assess the fit of a function by plotting and analyzing residuals.
 - c. Fit a linear function for a scatter plot that suggests a linear association.

Interpret linear models

- 7. Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.
- 8. Compute (using technology) and interpret the correlation coefficient of a linear fit.
- 9. Distinguish between correlation and causation.

Making Inferences and Justifying Conclusions

S-IC

Understand and evaluate random processes underlying statistical experiments

- 1. Understand statistics as a process for making inferences about population parameters based on a random sample from that population.
- Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model?

Make inferences and justify conclusions from sample surveys, experiments, and observational studies

- Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.
- 4. Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.
- 5. Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.
- 6. Evaluate reports based on data.

Understand independence and conditional probability and use them to interpret data

- Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").
- 2. Understand that two events *A* and *B* are independent if the probability of *A* and *B* occurring together is the product of their probabilities, and use this characterization to determine if they are independent.
- 3. Understand the conditional probability of *A* given *B* as *P*(*A* and *B*)/*P*(*B*), and interpret independence of *A* and *B* as saying that the conditional probability of *A* given *B* is the same as the probability of *A*, and the conditional probability of *B* given *A* is the same as the probability of *B*.
- 4. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.
- 5. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.

Use the rules of probability to compute probabilities of compound events in a uniform probability model

- 6. Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model.
- 7. Apply the Addition Rule, P(A or B) = P(A) + P(B) P(A and B), and interpret the answer in terms of the model.
- 8. (+) Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B|A) = P(B)P(A|B), and interpret the answer in terms of the model.
- 9. (+) Use permutations and combinations to compute probabilities of compound events and solve problems.

Using Probability to Make Decisions

S-ME

Calculate expected values and use them to solve problems

- (+) Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions.
- 2. (+) Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.
- 3. (+) Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value. For example, find the theoretical probability distribution for the number of correct answers obtained by guessing on all five questions of a multiple-choice test where each question has four choices, and find the expected grade under various grading schemes.
- 4. (+) Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value. For example, find a current data distribution on the number of TV sets per household in the United States, and calculate the expected number of sets per household. How many TV sets would you expect to find in 100 randomly selected households?

Use probability to evaluate outcomes of decisions

- 5. (+) Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values.
 - a. Find the expected payoff for a game of chance. For example, find the expected winnings from a state lottery ticket or a game at a fast-food restaurant.
 - b. Evaluate and compare strategies on the basis of expected values. For example, compare a highdeductible versus a low-deductible automobile insurance policy using various, but reasonable, chances of having a minor or a major accident.
- 6. (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).
- 7. (+) Analyze decisions and strategies using probability concepts (e.g. product testing, medical testing, pulling a hockey goalie at the end of a game).