$\hat{\rho}=$ \qquad $\rho_{0}=$ \qquad $\alpha=$ \qquad n = \qquad

Population
Focus Proportion

Step I Identify Procedure:

We want to test the evidence against the claim that the proportion of \qquad in the population of \qquad
\square is equal to \qquad $\%\left(\rho_{0}\right)$.

The null and alternative hypotheses are:

$$
\begin{aligned}
& H_{0}: \rho=\ldots \\
& H_{A}: \rho
\end{aligned}
$$

Step II Check Conditions:

* \qquad
\qquad : A \qquad was conducted to insure every member of the population was equally likely to be selected.
* \qquad Sampling Distribution: The sampling distribution of all possible sample proportions has an
approximately \qquad shape because:

* \qquad The lack of replacement is not a problem in this case because the number of subjects in the
population is more than \qquad times the sample size.

Step III Perform Procedure: Sketch the Sampling Distribution on the back of this page, and shade the P-value. Make it big and easy to read.

$$
\text { Sampling Distribution: Proportion }=\ldots \quad \frac{\sqrt{\rho(1-\rho)}}{\sqrt{n}} \quad=
$$

Shape: Approximately \qquad

Step IV Interpretation:

We fail to reject the null hypothesis at the	\% significance level (___). The P-value of ___ \% shows that an	
observed sample proportion as extreme as	\% (___) would be expected to occur _ \% of the time, and	
thus mere chance could explain the differen		
that the proportion of	in the population of	
is not equal to the reported proportion of	\% (ρ_{0}).	

OR
We reject the null hypothesis at the \qquad \% significance level (\qquad . The P-value of \qquad \% falls (just below OR well below) the significance level, thus there is (moderate OR strong) evidence that the alternative hypothesis is true, \qquad (___) is \qquad than \qquad \%.

