Gender Differences in Attitudes Towards

Science, Technology, Engineering, and Math Among High School Students

Word Count: 5294
students
differences based Engineering
found ${ }^{\text {learning }}$ scienchosers While Technology more

Kurz both female aH C More interested
high findings STEM
prompts
interest experiences
skewed Career factors Godwin through about similar among interesting made computer
Math male $S c i e n c e^{\text {mideridant left }}$ mon males life higher attitudes mean ese Journal having studied
study females Jones different data
indicating positive Out-of-School
interests ${ }^{\text {research }}$ school classes Used perceptions statistically

Introduction

Research from the last four decades has studied and mapped perceptions and interests in Science, Technology, Engineering, and Math (STEM) in children, adolescents, and college age students (Jones 2000). When determining a student's level of interest in STEM, researchers analyze categories such as attitudes, course and career enrollment, and formal and informal experiences. The most highly documented difference in experience and attitudes regarding STEM has been seen through gender (Jones 2000). This has contributed to a "gender gap" in these fields as women are underrepresented in STEM among careers, interests, academics, and perceived abilities (Jones 2000). In addition to gender, life experiences and factors such as exposure in the form of both formal and informal learning experiences, have also been documented to have a large impact on a student's interests as they introduce students to new ideas (Kurz 2015). While most studies review younger students as STEM interests are formed and solidified, highschool students still experience both stability and shifts in STEM interest that are important to consider (Godwin 2016). Overall, this research will aim to answer the question of to what extent does gender influence different aspects of interests in STEM among high schoolers.

Literature Review

Factors of Attitudes

Historically, the fields of science, technology, engineering, and math have been male dominated. These differences not only include interest in this field, but also enrollment and achievement in classes, and perceived abilities (Christensen 2017, Hirsh 2011, Sadler 2012). However, many researchers point to some decrease of this trend overtime with the change of social and cultural attitudes (Salmon 2015). Furthermore, the nature of this gender gap in STEM is still under debate. Studies have found that females have higher interest in life sciences, such as biology, while males had higher interests in physical sciences (Jones 2000, Haussler 2002, Christensen 2017). Additionally, a study on differences in science and engineering career interest in terms of demographic factors, such as gender and socioeconomic status, found no significant gender differences in science interest, but just in engineering and technology disciplines (Ing 2014).

The paper "Gender differences in students' experiences, interests, and attitudes toward science and scientists.", by Gail M. Jones, a professor of Science Education at North Carolina State University, examines sixth grade student's experiences and attitudes related to science in order to explore the nature of gender differences in attitudes towards science topics. This study used a seven part survey that included Scientists as Persons, Out-of-school Experiences (science related experiences), Things to learn about (topics participants were interested in), Importance for Future Job (favorable attributes in a job), Science in Action (adjectives associated with science), Scientists at Work (what participants thought scientists did), and Me as a Scientist, all of which adopted from the international study "Science and Scientists" by S. Sjoberg. Overall, the research found that all of the categories had statistically significant results pointing to interests falling on gender typic lines (Jones). Some of these findings include females being more interested in and having more experience with biological sciences, and males with physical science, since males are more interested in science by associating it with positive traits (Jones 2000).

One common explanation for this disparity in interest among males and females are historic and cultural stereotypes. A study analyzes the causes of gender differences in STEM fields, learning achievement, and transition to the labor market found worldwide trends (Salmon 2015). This report attributed overall low proportion of females at higher education in STEM fields and a gap in achievement in math and science at different educational stages to factors such as lack of gender sensitive STEM related teaching material and teacher training, lack of female role models, gender differences in perceived performance, and psychological and social influences (Salmon 2015). Furthermore a literature review on the effects of race and gender on science education supports these ideas as it describes how historical discrimination and bias has lead to unconscious bias in modern society (Pinder 2014). Subconscious stereotypes created by these cultural and historical norms lead to decreased interest, and lower self-perceived abilities STEM related fields (Pinder 2014). The study, "An intervention study to enhance girls' interest, self-concept, and achievement in physics classes." found differences in children's self interests in terms of physics, but also found that training techniques to improve self concept had low effects, ultimately supporting the idea that there are gender differences in self concept in regards to STEM (Haussler 2002).

However, another explanation for this disparity is a lack of knowledge and exposure to the subject. According to many researchers, the topic of experienced stimuli, such as classes and extracurriculars on STEM interests were the best indicators of STEM interest among students. They hypothesize that this is because students are participating of their own vocation, and thus often result receive more hands on experience (Sullivan 2016, Blanchard 2015, Schnittka 2016). A study by Dr. Rhonda Christensen, a professor of learning technologies, analyzes the differences in STEM dispositions among students in different STEM related activities. This study looked at the effects in participation in a STEM oriented school, an after school program, and a club. Although this paper found strong interests among students in their respective areas of focus, this paper also supports the importance of active engagement (Christensen 2015). While this study found typical gender differences among participants, the findings also point to these programs having a more positive impact on female participants (Christensen 2015). However, despite extracurriculars often being the strongest indicator of STEM interests, researchers must also be weary of the effects of participating in these activities as participants self select inclusion in these programs (Welch 2011). Because of this, findings regarding extracurriculars can not be applied to all students (Welch 2011). A study on the effect of showing videos of Scientist describing what they do in order to students in grades 6 to 8 in order to educate students on current work in the field of science found that the treatment group had far higher levels of interest after watching the videos, but also found no gender differences in the post-test results (Wyss 2012). This finding suggests that the gender disparity in interest is due to differences in exposure to topics, rather than biological or social reasons (Wyss 2012). Despite this study only documenting the short term effects of activities that create exposure such as this four day camp, it indicates the possibility of experience create long term interest.

Similarly, "Disciplinary Differences in Out-of-School High School Science Experiences and Influence on Students' Engineering Choices." by Godwin et. al surveyed over 1,000 college freshman on out-of-school engineering related experiences during high school and analyzed them in terms of college major (Godwin 2016). This study found that participation in science-related out of school experiences increased the likelihood of enrolling in an engineering discipline in college as well as the presence of the gender gap in both experiences and science interests (Godwin 2016). The findings point to the importance of informal learning experiences as factors, indicating that
initiating these activities can foster interests among students (Godwin 2016). This is significant as fostering interest through informal activities may help to decrease the gender gap and lead to more women entering STEM.

Populations of Interest

By analyzing levels of interests in STEM, researchers attempt to establish a link between adolescent interest and career intent. As a culture and surroundings play a large role in developing interests, researchers have looked at student's STEM interests from early life through college, finding gender differences as early as preschool (Leibham 2013). The majority of current research focuses on elementary and middle school students are learning about new topics and developing interest (Wyss 2014 , Christensen 2017, Hammack 2015, Blanchard 2015). Furthermore, as research have found differences in STEM interest by age, often worsening as age increases, it is important to view the career interests of students in high school as an indication of career choice (Kurz 2015). Research such as "Relationship of middle school student STEM interest to career intent", published in the Journal of Education in Science, Environment and Health, found a high correlation between middle school interest in and career aspirations in the STEM field (Chistensen 2017). These findings support the idea that interest is a high motivator for career interest at this age, above factors such as money or fame (Christensen 2017). However, research on high school students and career interest by Thomas P. Dick, the director of mathematics education at Oregon State University, found a gender gap between highschool courses and career interest as many students cited other factors such as money and parental affirmation as factors in career choice.

In addition to gender, current research is also tracking STEM interests among different age levels from preschool to college. Research such as "Stability and volatility of STEM career interest in high school: A gender study" shows high schoolers to be an important age group as there is a mix of consistency and fluctuation in career interest at this age (Sadler 2012). This study surveyed 6860 undergraduate students in both STEM and non-STEM related majors and asked students about their career aspirations at different times in high school and found that the highest predictor of STEM career interest at the end of highschool, and therefore following a career in the field, was interest during high school (Sadler 2012). However, this study also found gender differences in
career patterns as females were more likely to lose interest in STEM careers and less likely to enter (Sadler 2012).

Overall, research on the issue of adolescent interest in science, technology, engineering, and math has an overall emphasis on the issue of gender while also including research on other topics such as involvement in different activities and different stages of adolescence. This topic of adolescent interest is becoming increasingly important as current estimates suggest future growth and demand in careers that emphasize science, technology engineering and math (Bureau of Labor Statistics). One gap this study will investigate is an in depth look at gender disparities in STEM interests at the highschool level in terms of experiences, interests, and career aspirations.

Methods

Population

The population studied were high school students at GHC, a densely-populated public high school located in suburban southern California with over 4,000 students. This population is ethnically diverse with a middle income, the median income of feeding districts being \$74,222. About half of the student body qualifies for free or reduced lunch programs. These characteristics of diversity and income level of this school allows for the findings of this report to be generalized for other suburban schools around the country. This study includes respondents from 9th to 12th grade of both genders. Additionally, this school offers many different classes ranging in difficulty and over 50 clubs for students to participate in and that feed and foster interests in areas such as STEM. For this study, the general population will be separated and analyzed by subpopulation based on gender.

Instruments

Data will be collected from subjects regarding attitudes of STEM topics. This survey is a combination of different surveys from peer-reviewed journal articles on similar topics. This survey includes 7 different subsections, classes and extracurriculars, career perceptions, interests, career interests, out-of-school experiences, learning interests, and attributes of science. Demographic information regarding grade, gender, and ethnicity were collected at the beginning of the survey. Full Instrument can be found in Appendix \#1.

The classes and extracurriculars subsection was created for this study and asked students to self report their extracurricular involvement and length of involvement, as well as Advanced Placement (AP) science or math classes along with the grade that they received. Options for Advanced Placement classes were collected from the College Board website under the mathematics and science labels. AP classes taken and success in those classes are important factors to study as their rigorous curriculum introduces new ideas (Godwin). Similarly, extracurriculars are also a sign of demonstrated interests, and often involve hands-on experience with STEM.

The career perceptions subsection was adapted from the study "Effects of exposure on attitudes towards stem interests" (Kurz 2015) and was used to measure students perceptions of different STEM careers, such as curing disease or teaching math. Perceptions were recorded with a five point likert-scale from boring to interesting. Some of the wording for these questions were altered as the Kurz study population was 5th graders. Additionally, prompts regarding overall opinions of STEM careers were added. This subtest is important because it measures subjects opinions on STEM careers. The career interests subsection was also adapted from the same Kurz study and measured student's interests in STEM topics. Prompts in this section are the same as the previous subtest, however, it asks students their opinions on pursuing those careers themselves. Similarly, interest was measured using a 5 point likert-scale from "Hate to Do" to "Love to Do".

The table below includes the Perceptions and Career Interests sections from the Kurz Study:

Subsection	Perceptions (Boring to Interesting)	Career Interests (Hate to do to Love to do)
Science	-To me, a career curing disease is: -To me, a career helping sick people is:	-Curing disease is something I would: -Helping sick people is something I would:
Technology	-To me, a career making robots is: -To me, a career working to make new games for computers is:	-Making robots is something I would: -Making new games for computers is something I would:
Engineering	-To me, a career helping send people to space is: -To me, a career designing bridges is: -To me, a career designing cars is:	-Sending people to space is something I would: -Designing bridges is something I would: -Designing cars is something I would:
Math	-To me, a career teaching Math is:	-Teaching Math is something I would:

The out-of-school experiences, learning interests, and perceptions of science, subtests were all adapted from "Gender differences in students' experiences, interests, and attitudes toward science and scientists." (Jones 2000) These tests were formatted as lists that subjects check off the options that apply to them. The out-of-school experiences subtest indicates experiences that may help to teach or learn science or indicate a pursued interest. Learning Interests indicate science related concepts the subject in interested in learning and indicates if there is a specific type of science they are interested and overall interest. Perceptions of Science gives a list of traits and asked the subjects which of these they associated with science. Despite the fact that this study focused on science, prompts from these subsections included areas of engineering and technology, such as interest in cars and computer programs, which made these tests highly useful in completing the goals of this study. Additional prompts were added from "Disciplinary Differences in Out-of-School High School Science Experiences ..." into the out-of-school experiences subtests (Godwin).

Table below includes prompts for the out-of school experiences, learning interests, and attributes of science subtests from the Jones study:

Out-of-School Experiences (Have you ever done this outside of school?)	Learning Interests (What topics look interesting to you?)	Attributes of Science (When you think of "science" what comes to mind?)
- Used an air gun or rifle - Made bow and arrows, catapult, or boomerang - Used a car jack or changed tires - Made a cart or wheelbarrow - Chopped wood or collected firewood - Charged a car battery or other batteries - Played with electric batteries and bulbs or motors - Used electric toys	- What an atomic bomb consists of and how they are made - Atoms and molecules - Why birds and planes can fly - The car and how it works - Chemicals and their properties - Computers, PCs, and what we can do with them - Dinosaurs and why they died out - Electricity, how it is	- Power - Easy to understand - Helping the poor - Destructive and dangerous - Creates problems for society - Most suitable for boys - Difficult to understand - Doing

- Charged a fuse or attached electric lead to plug
- Studied the inside of a radio, TV, video, or similar
- Mended a bicycle tire
- Used a microscope
- Used a rope and pulleys for lifting heavy things
- Used a saw
- Made bread or pastry
- Watched a bird make a nest
- Made your own clothes
- Knitted, or made baskets or mats
- Observed or Studied the Milky Way or constellations of stars
- Used a needle and thread for sewing
- Planted and watched seeds grow
- Weaved cloth and textiles
- Read/Watched non-fiction science*
- Read/Watched science fiction*
- Played computer/ video games*
- Wrote computer programs or designed web pages*
- Talked with friends or family about science*
produced and used in the home
- Important inventions and discoveries
- Latest developments in technology
- Light and optics
- How nuclear power plants functions
- How radioactivity affect life and the body
- Rockets and space travel
- How scientists think and work
- Sounds and music from birds and other animals
- New sources of
- energy from the sun, wind, ect
- X-rays and ultrasound in medicine
- The rainbow, what it is, and why you can see it
- What we should eat to be healthy
- What are colors and how do we see different colors
- Clouds, rain, and snow
- How birds and animals communicate
- AIDS: What it is and how it spreads
experiments
- Useful in everyday life
- Important for Society
- Interesting and Exciting
- Creates pollution
- Boring

Prompts from the Godwin study are indicated by the *

Sample Selection

Respondents for this study were chosen through a stratified random sample in order to collect data from a representative population of the entire student body. The stratum chosen were the different gates of entry to the school, as all students must enter through these gates and consistently use the same entrance, which allowed data collection to span multiple days. After responses were collected. A random number generator was used to get a sample of 100 students
proportionately collected from each of the gates based off of popularity, resulting in a sample representative of the entire population of the school. Furthermore, the sample was collected in the morning between 7:00 and 8:20 as the large majority of students enter school at this time and do so only once a day.

Implementation Details

The survey will be administered electronically through Google Forms, an app that has allowed me to compile and organize the subtests used in this survey. This program was also used to randomize the order of prompts in each subsection to prevent confounding of the order and attitude toward STEM. The Respondents had the option to take the survey at the time they are asked at the entrances to the school or provide their student ID and receive the survey through their email. After data is collected with Google Forms, it was transferred into Microsoft Excel in order to sort and statistically analyze. Excel tool pack such as, univariate and bivariate calculations, p-value determination for t-tests, and histogram construction were used to interpret the data and determine statistically significant results.

In order to minimize nonresponse bias, this survey was available to students at their leisure, accessible on their personal laptops, and would enter participants into a raffle for a gift card as incentive. Social desirability bias was avoided by keeping responses anonymous and avoiding strong wording in prompts and questions.

Relation to Current Body of Knowledge

By following instruments developed in peer reviewed academic journals, prompts used and data collected has been tested and approved by experts in the field. Data collected in these foundational articles were also collected with self-assessing surveys. However, this study deviates from the two foundational sources in terms of the age of populations studied as the Kurz study surveyed students after being exposed to the stimuli of an engineering exposition, and Jones study was conducted on a younger age group and over a decade ago. Overall these population differences and possible comparisons between data illustrate a new area of understanding addressed by this study.

Findings

Complete data collected is located in Appendix \#2
Population Findings

Perceptions (Interesting - Boring)	Aggregate Mean	Confidence Level	Kurz Aggregate Mean
Science $(2-10)$	7.82	.45	5.9
Technology $(2-10)$	6.94	.5	7.5
Engineering $(3-15)$	9.37	.62	10.1
Math $(1-5)$	2.16	.24	2.7

Interests (Love to Do - Hate to Do)	Aggregate Mean	Confidence Level	Kurz Aggregate Mean
Science $(2-10)$	7.39	.47	6
Technology $(2-10)$	6.34	.49	6.8
Engineering $(3-15)$	9.37	.62	9.7
Math $(1-5)$	2.3	.27	2.5

Out of School Experiences	Overall Proportion $(\%)$	Learning Interests	Overall Proportion $(\%)$	Attributes of Science	Overall Proportion $(\%)$
Used an air gun or rifle	33	What an atomic bomb consists of and how they are made	43	Power	46
Made bow and arrows, sling, catapult, or boomerang	34	Atoms and molecules	32	Easy to Understand	20
Used a car jack or changed tires on a car	24	Why birds and planes can fly	42	Destructive and Dangerous	16
Made a cart or wheelbarrow	7	The car and how it works	29	Creates Problems for Society	11
Chopped wood or	41	Chemicals and their	36	Most Suitable for	6

collected firewood		properties		boys	47
Charged a car battery or other batteries	36	Computers, PCs, and what we can do with them	48	Difficult to Understand	Doing Experiments

Math competition(s)		how it spreads			
Read/Watched non-fiction science	67				
Read/Watched science fiction	72				
Played computer/ video games	86				
Wrote computer programs or designed web pages	33				
Talked with friends or family about science	69				

Gender Differences

Perceptions (Boring- Interesting)	Overall mean	Female Mean	Male Mean	P-value Gender	P-value Gender (Kurz Study)
To me, a career curing discase is:	3.89	4.00	3.75	.1415	
To me, a career helping sick people is:	3.91	4.15	3.58	.0102	
Science Perceptions Sum	7.82	8.15	7.325	.0303	$.0470(-)$
To me, a career making robots is:	3.27	3.18	3.45	.1788	
To me, a career working to make new games for computers is:	3.64	3.55	3.80	.1824	
Technology Perceptions Sum	6.94	6.733333333	7.25	3.78	.2577
To me, a career helping send people to space is :	3.66	3.60	2.75	$.0001(+)$	
To me, a career designing bridges is :	2.66	2.60	3.38	.0300	
To me, a career designing cars is:	3.04	2.85	9.9	.0642	$.0002(+)$
Engineering Perceptions Sum	9.37	8.916666667			
To me, a career teaching Math is:	2.16	2.41	.8959		

Career Interests (Hate to do- Love to do)	Overall mean	Female Mean	Male Mean	P -value Gender	P-value Gender (Kurz)
Curing disease is something I would:	3.7	3.87	3.43	. 0448	
Helping sick people is something I would:	3.71	3.97	3.30	. 0048	
Science Interests Sum	7.39	7.833333333	6.725	. 0146	.0007(-)
Making robots is something I would:	2.97	2.88	3.10	. 2327	
Making new games for computers is something I would:	3.36	3.13	3.73	. 0168	
Technology Interests Sum	6.34	6.016666667	6.825	. 0589	.0001 ${ }^{+}$)
Sending people to space is something I would:	3.26	3.22	3.35	. 3031	
Designing bridges is something I would:	2.35	2.24	2.50	. 1612	
Designing cars is something I would:	2.81	2.57	3.18	. 0174	
Engineering Interests Sum	9.37	7.983333333	8.95	. 0704	.0002(+)
Teaching math is something I would:	2.3	2.43	2.08	. 0874	. 4644

*(-) indicates male students having stronger perceptions or interests from the Kurz Study.

Out of school experiences	Overall Proporti on (\%)	Male $(\mathrm{n}=40)$	Female $(\mathrm{n}=60)$	P-value	Jones study Male	Jones study female	Jones study P-value
Used an air gun or rifle	33	55	18.3	.0001	73.5	35.5	.0000
Made bow and arrows, sling, catapult, or boomerang	34	42.5	28.3	.0640	71.0	43.3	.0000
Used a car jack or changed tires on a car	24	37.5	15	.0043	61.4	25.1	.0000
Made a cart or wheelbarrow	7	10	5	.162	40.2	20.5	.0000
Chopped or collected firewood	41	47.5	36.6	.1403	89.1	74.8	.0000
Charged a car battery or other batteries	36	47.5	28.3	.0252	66.2	51.6	.002
Played with electric batteries or motors	38	45	33.3	.1195	85.1	71.4	.001
Used electric toys	70	72.5	68.3	.3280	94.6	87.7	.011
Charged a fuse or	12	20	6.6	.0222	89.7	80	.004

attached electric lead							
Studied the inside of a radio, TV, or similar	25	35	18.3	. 0297	71.8	46.9	. 000
Mended a bicycle tire	17	22.5	13.3	. 1159	67.1	35.7	. 000
Used a microscope	61	70	55	. 0659	87.9	79	. 011
Used a rope and pulleys for lifting	28	30	26.6	. 3580	75.3	52.8	. 000
Used a saw	31	50	18.3	. 0000	92	72.6	. 000
Made bread or pastry	65	55	71.6	. 0435	71.9	89.2	. 000
Watched a bird make a nest	22	15	26.6	. 0838	52.7	62.2	. 000
Made your own clothes	25	2.5	40	. 0000	12.3	32.2	. 044
Knitted, or made baskets or mats	26	10	36.6	. 0014	26.7	51.4	. 000
Observed constellations of stars	37	35	38.3	. 3676	57.8	68.4	. 025
Used a needle and thread for sewing	57	32.5	73.3	. 0000	69.5	92	. 000
Planted and watched seeds grow	58	42.5	68.3	. 0052	73.3	83.2	. 012
Weaved cloth and textiles	18	10	23.3	. 0445	53	77	. 004
Participated in Science groups/ camps/ clubs	29	37.5	23.3	. 0630	-	-	-
Participated in Science/ Math competition(s)	23	20	25	. 2802	-	-	-
Read/Watched non-fiction science	67	67.5	66.6	. 4654	-	-	-
Read/Watched science fiction	72	67.5	75	. 2066	-	-	-
Played computer/ video games	86	90	83.3	. 1732	-	-	-
Wrote computer programs or designed web pages	33	47.5	23.3	. 0059	-	-	-
Talked about science	69	67.5	70	. 3956	-	-	-

Learning Interests	Overall	$\begin{aligned} & \text { Male } \\ & (\mathrm{n}=40) \end{aligned}$	Female $(\mathrm{n}=60)$	P-value	Jones study Male	Jones study female	Jones study P -value
What an atomic bomb consists of and how they are made	43	55	35	. 0239	70	40	. 000
Atoms and molecules	32	. 425	. 25	. 0330	43	23	. 000
Why birds and planes can fly	42	. 35	. 466	. 1234	55	33	. 000
The car and how it works	29	. 375	. 233	. 0630	70	30	. 000
Chemicals and their properties	36	. 40	. 333	. 2481	54	32	. 000
Computers, PCs, and what we can do with them	48	. 55	. 45	. 1635	69	50	. 000
Dinosaurs and why they died out	28	. 25	. 30	. 2927	70	57	. 0009
Electricity, how it is produced and used in the home	41	. 425	. 40	. 4016	42	24	. 000
Important inventions and discoveries	51	. 475	. 5333	. 2837	50	37	. 005
Latest developments in technology	51	. 50	. 516	. 4351	68	46	. 000
Light and optics	33	. 40	. 283	. 1120	47	31	. 000
How nuclear power plants functions	30	. 425	. 216	. 0129	50	23	. 000
How radioactivity affect life and the body	38	. 475	. 316	. 0550	48	31	. 000
Rockets and space travel	43	. 575	. 333	. 0084	60	38	. 000
How scientists think and work	34	. 25	. 40	. 0605	33	23	. 000
Sounds and music from birds and other animals	35	. 30	. 383	. 1960	54	35	. 002
New sources of energy from the sun, wind, ect	44	. 425	. 45	. 4025	44	30	. 003
X-rays and ultrasound in medicine	37	. 20	. 483	. 0020	54	43	. 023
The rainbow, what it is,	43	. 25	. 55	. 0015	45	65	. 000

and why you can see it							
What we should eat to be healthy	44	.30	.533	.0106	36	53	.000
What are colors and how do we see different colors	53	.325	.666	.0004	41	52	.026
Clouds, rain, and snow	37	.20	.483	.0020	52	54	.000
How birds and animals communicate	41	.275	.50	.0125	58	71	.000
AIDS: What it is and how it spreads	31	.15	.416	.0023	26	35	.043

Attributes of Science	Overall	Male $(\mathrm{n}=40)$	Female $(\mathrm{n}=60)$	P-value	Jones study Male	Jones study female	Jones study P-value
Power	46	40	.50	.1628	58	44	.003
Easy to Understand	20	.15	.233	.1537	53	41	.015
Destructive and Dangerous	16	.15	.166	.4118	28	16	.003
Creates Problems for Society	11	.15	.0833	.1483	26	15	.006
Most Suitable for boys	6	.05	.06	.3000	14	6	.006
Difficult to Understand	47	.525	.433	.1841	41	51	.050
Doing Experiments	82	.85	.80	.2619	75	84	.025
Useful in everyday life	65	.55	.717	.0434	74	76	NS
Important for society	67	.625	.70	.2172	61	60	NS
Interesting and Exciting	64	.625	.65	.3993	61	59	NS
Creates Pollution	13	.10	.15	.2332	23	15	NS
Boring	9	.075	.117	.2481	19	25	NS

Response Distributions/ Histograms

Science Perceptions among GHC high schoolers is skewed to the left. The mean for aggregate Science scores was 7.85 out of 10 with 60% answering 8 -10, indicating that they found Science more interesting than boring. This left skewed trend is similar in the two component questions.

There are differences between the distributions of responses to the Science Perceptions based on gender. This histogram illustrates that female responses were skewed to the left while male responses were clustered closer to Neutral. The difference in nature of perceptions is further supported by the very low p-value of .0303 in favor of females.

Technology Perceptions among GHC high schoolers is slightly skewed to the left. The mean for aggregate Technology scores was 6.94 out of 10 with 52% answering $8-10$, indicating respondents had overall positive technology perceptions. This left skewed trend is similar in the two component questions of this subsection, but the prompt of "...new games for the computer" is more extreme.

Overall the Female and Male distributions for the Technology Perceptions question display similar trends as both are skewed to the left. Despite the fact that Males had more positive responses in the 4 to 5 range, the high p-value of .1598 demonstrates no statistically significant difference.

Technology Perceptions among GHC high schoolers is bunched around neutral with a slight left skewness. The mean for aggregate Engineering score was 9.37 out of 15 with 39% answering 12-15 , indicating that they found Engineering slightly more interesting than boring. However, this trend was not followed in the component questions of the subsections.

The distribution of Male and Female responses show a fairly similar shape with responses clustering towards the neutral responses. However, Male responses were largely concentrated in the moderately positive response area, resulting in a left skewed distribution and a moderately low p-value of .0659 , indicating a possible significant difference.

Math Perceptions among GHC high schoolers is strongly skewed to the right. The mean for aggregate Science scores was 2.16 out of 5 with 62% answering 1-2, indicating that they found math more boring than interesting.

Math Perceptions for both subpopulations demonstrate a right skew. However, male responses are more extreme as almost no respondents answered positively. This difference in perception is further demonstrated by the low p-value of .0039 , indicating that Females have higher Math Perceptions.

Science Interests is strongly skewed to the left. The mean for aggregate Science scores was 7.39 out of 10 with 59% answering $8-10$, indicating that they would like to pursue careers in science in the future. This left skewed trend is similar in the two component questions of this subsection.

Similarly to Science Perceptions, there is a difference in distribution based on gender as Male interest is more symmetrical and Female interest is skewed to the right, indicating positive attitudes. A p-value of . 0146 indicates females have statistically significantly higher Science interests.

Technology Interests among this population is almost evenly distributed with a slight left skew. The mean for aggregate technology scores was 6.34 out of 10 with 42% answering $8-10$. However, this trend is not followed in the component question of " working to make new games for the computer", which shows a right skewness.

Unlike Technology Perceptions, there is a difference between the Gender distributions as Male responses are skewed to the left and female are clustered around neutral. These differences are supported by the low P-value of .0589, indicating moderate statistical significance.

Engineering Interests among GHC high schoolers is concentrated around neutral with a sight skew left . The mean for aggregate technology scores was 9.67 out of 15 with only 35% responding in the extreme values, indicating that most students do not have strong opinions on the topic.
However, this trend is not followed in the three component questions of this subsection, indicating that Engineering Interests among this population vary based on the specific asked.

Similar trends to Engineering Perceptions as both male and female responses are clustered around neutral, but male distribution also being moderately skewed to the right, indicating more positive attitudes. The moderately low p-value of .0704 indicates possible statistical significance.

Math Interests among GHC high schoolers is strongly skewed to the right. The mean for aggregate Science scores was 2.16 out of 5 with 62% answering 1-2, indicating that they would not like to pursue it as a career in the future.

Math interests among both males and females are skewed to the left, indicating more negative attitudes. However, the female distribution has a slight cluster around neutral, creating possible gender differences, indicated by the moderately low p-value of .0807 favoring females.

Analysis of Findings

Population analysis/ General Findings

General comparisons between the quantitative scores found in the perceptions and Career Interests subsections of this survey and the foundational source show overall similar values with statistically significant differences in Science and Math Perceptions, and Science Interests. Overall, the strongest Interests and Perceptions were found for the Science subcategory. However one difference between the results in this study and both the Kurz study and Jones study were the amount of Statistically significant findings. As both the Kurz and Jones studies had many more statistically significant findings, it is important to note that both studies had much larger
populations, meaning that statistically significant findings could be derived from smaller differences in proportions of subpopulations. However, these differences in statistically significant findings can also indicate stronger gender differences or stronger attitudes regarding STEM in the current population studied and those in the Kurz and Jones Studies.

STEM Perceptions

When analyzing the data in terms of Gender, statistically significant differences were present in the categories of Science Perceptions, Engineering Perceptions and Math Perceptions after running a t-test for unequal variances at a .05 significance level. Science Perceptions and one of the prompt of "a career helping sick people" had a p-value of .0303 and .0102 respectively with the mean response of Females being higher. The t-test for Engineering Perceptions also revealed statistically significant results with the prompt of "a career designing cars" having a p-value of .0300 with the male mean being higher. The Comparison of Means of Math Perceptions resulted in a P-value of .0039 with female respondents having a higher mean. However, many of these findings do not match the pattern set by the Kurz study where these subtests originated from. While the Kurz study found statistically significant gender differences between the Science, Technology, and Engineering Perceptions, that study found that males had higher perceptions of Science while Females had higher perceptions of technology and engineering, the opposite of what was found in the GHC study. While these findings refutes the claims of the Kurz study, it supports the ideas of others, such as the Jones study, as the prompts asked regarding science had to do with life science and therefore were more stereotypically female versus the Technology and Engineering prompts (Jones 2000, Christensen 2015, Wyss 2012).

Furthermore, when comparing the different disciplines based by gender, the vastly different results in terms of distribution and statistically significant differences indicated that Gender differences in STEM perceptions are based on specific subjects such as Math or Technology and can not be generalized to STEM as a whole. Evidence of these differences in discipline can be found in the histograms as there were differences in shape, center, and spread across the disciplines of STEM. The fact that females have statistically significantly higher perceptions in Science and Math while Males have higher perceptions in Engineering further support this point.

STEM Career Interests

STEM Career Interests followed similar trends to STEM Perceptions as statistically significant results were found in the Science, Technology, and Engineering categories. Science Interests resulted in a p-value of .0146 with Females having higher interests. However, Technology interest prompt of " Making new games for the Computer" resulted in a p-value of .0168 and the Engineering interest prompt of "Designing Cars" resulted in a p-value of .0174 , both of which indicating that Male respondents had higher interests in these STEM careers. While different prompts showed statistical significance, this subsection also supports the theory that gender differences in STEM occur based on discipline as the distributions among Science, Technology, Engineering and math were different.

Out-of-School Experiences

Statistically significant differences were found in 14 of the out-of-school experiences when they were analyzed in terms of Gender, with these differences falling along gender-typic lines. Of the statistically significant findings Males reported higher experience with activities involving physical sciences and technology, such as "studied the inside of a radio, TV, or similar" and " Wrote Computer Programs or designed web pages". On the other hand, Females reported higher experiences with biological sciences and handiwork such as, "Planted and watched seeds grow" and used a needle and thread for sewing. However, experiences that had to STEM in general instead of specific topics, such as "Participated in Science groups/ clubs/ camps" and "Talked ... about science" had no statistically significant differences, indicating that the main gender difference between males and females of this population come from differences in specific disciples within Science. These trends are largely similar to the Jones study where these prompts originated as that study also found "That gender differences noted... support historical supposition that boys tend to have more experiences in the physical sciences and girls tend to have more experiences with biological sciences" (Jones). However, one differences between the results of this study and the foundational source were the proportion of activities that males and females dominated. While the GHC study had a similar amount of activities that had a statistically significant results in favor of males and females, the Jones study had many more activities that Males had more experience than females.

Learning Interests

Statistically significant differences in the proportion of each gender that was interested in each topic were found in 11 of the prompts. Similarly to the "Out-of-School Experiences" male respondents showed a statistically significant amount of greater interest than females in categories involving physical sciences and technology such as "How nuclear power plants function" and "Rockets and Space travel". Female respondents showed statistically significant amounts of greater interests in categories involving life sciences such as "x-rays and ultrasounds used in medicine" and " How birds and animals communicate". Additionally female respondents showed a statistically significant amount of greater interests in topics that fell outside of this category, but were still stereotypically feminine such as "what the rainbow is and why you can see it" and " clouds rain and snow". The Jones study found similar results in terms of which types of topics each gender was more interested in, but had a very different proportion of topics that each gender had statistically significant more interest in. While the Jones study had a total of 20 topics that males were more interested in and 6 topics that females were more interested in, this GHC study has a total of 4 topics that males have statistically significant higher interests in and 7 topics that females have higher interests in. This indicated that females in this population are more interested in Science or that Males are less interested in Science.

Attributes of Science

Statistically significant differences in attributes of Science between Genders was found in 1 topic. The prompt that involving "use in everyday life" had a p-value of .0434 , indicating that females viewed sciences as more useful. However, as the rest of the prompts resulted in no statistically significant differences, males and females attribute similar qualities and have similar perceptions of Science. This finding differs from the Jones study as it found statistically significant differences in 8 of the prompts, but no large patterns in which prompts were favored by each gender. This subsection supports the idea that gender differences in STEM are dependant on specific disciplines as these prompts asked about attributes of STEM as a whole.

Conclusion

Discussion

All together, these findings support the concept of a gender gap in the STEM field. However, these findings demonstrate a level of complexity in the nature of STEM attitudes as different subcategories had very different results. Demonstrated by STEM perceptions, career interests, out of school experiences, and learning interests, gender differences are highly dependant on the specific topics within STEM, with females tending to have positive attitudes with topics such as biological sciences and males having more positive attitudes with topics relating to Engineering and physical sciences. However, Lack of statistically significant findings in the subtopics of Out of school experiences and Attributes of Science demonstrate that there is little difference between genders in attitudes towards STEM as a whole.

Limitations

Because of the fact that research in this field dealt with concepts that are familiar in a high school environment and this study focused on a population of suburban high schoolers, this study very closely aligned with the research methods used by the foundational sources.

The issue of imprecision of data can be found in this report due to the subjective nature of this topic. For example, different respondents may be more or less likely to pick a strongly positive answer over a moderately positive answer.

Although the sample size of 100 respondents from this population is large enough to be an accurate representation of the population studied, larger sample sizes found in the Jones and Kurz study allowed them to find statistically significant conclusions based off of smaller differences in population means of proportions.

Furthermore, the presence of non-response bias must also be taken into account when analyzing these findings. As this survey was sent to participants to complete at their own leisure, many of the students who were sent surveys did not provide data, meaning that their may be some factor among those who did not respond that would alter the conclusions found from this data.

Implications

Overall, this study contributes to a deeper understanding of the components of interest and perceptions of STEM topics and the relationship each with gender among suburban highschool students. These attributes were viewed through the categories of perceptions, career interests, out-of school experiences, learning interests, and perceptions of science, with prompts replicated from both the Jones, and Kurz studies in this field. This research supports the findings of these previous reports as it demonstrates similar trends among student interest and perceptions about Science, Technology Engineering, and Math. Based off of data collected and processed from this Study, gender differences in STEM interests and perceptions depend on specific fields within these disciplines, such as life sciences, or technology. In general, Males had statistically significantly more positive responses in categories that involved physical sciences and technology, and females has statistically significantly more positive responses in categories that pertain to life sciences. However, few statistically significant differences were found in categories that asked about science in general, such as most of the prompts in the "Attributes of Science" subsection, indicating that gender differences in reactions towards STEM are not towards the field in general, but towards specific topics.

Although the topic of gender differences in STEM interests have been covered by other researchers in the field, this study contributes to the current body of knowledge by exploring the nature of the relationship between gender and different aspects of a suburban high schoolers interests and perceptions of the STEM field. By aligning with previous studies, this data also gives insight to the relationship of age, geography, and school type through comparisons with their findings. In addition to recognizing an issue, these findings also give future programs specific areas to target, such as involving males with biological science or females with engineering. Overall, these findings illustrate the complexities of the gender gap.

Work Cited

Baram-Tsabari, Ayelet, and Anat Yarden. "Characterizing children's spontaneous interests in science and technology." International Journal of Science Education 27.7 (2005): 803-826.

Blanchard, Sarah; Judy, Justina; Muller, Chandra; Crawford, Richard H.; Petrosino, Anthony J.; White, Christina K.; Lin, Fu-An; and Wood, Kristin L. (2015) "Beyond Blackboards: Engaging Underserved Middle School Students in Engineering," Journal of Pre-College Engineering Education Research (J-PEER): Vol. 5: Iss. 1, Article 2.

Christensen, Rhonda, Gerald Knezek, and Tandra Tyler-Wood. "Alignment of hands-on STEM engagement activities with positive STEM dispositions in secondary school students." Journal of Science Education and Technology24.6 (2015): 898-909.

Christensen, R. \& Knezek, G. (2017). Relationship of middle school student STEM interest to career intent. Journal of Education in Science, Environment and Health (JESEH), 3(1),

Dick, Thomas P., and Sharon F. Rallis. "Factors and influences on high school students' career choices." Journal for Research in Mathematics Education (1991): 281-292.

Godwin, Allison, Gerhard Sonnert, and Philip M. Sadler. "Disciplinary Differences in Out-of-School High School Science Experiences and Influence on Students' Engineering Choices." Journal of Pre-College Engineering Education Research (J-PEER) 6.2 (2016):

Hammack, Rebekah, et al. "Effect of an engineering camp on students’ perceptions of engineering and technology." Journal of Pre-College Engineering Education Research (J-PEER) 5.2 (2015): 2

Häussler, Peter, and Lore Hoffmann. "An intervention study to enhance girls' interest, self-concept, and achievement in physics classes." Journal of research in science teaching 39.9 (2002): 870-888.

Hirsch, Linda S., et al. "Middle school girls' perceptions of engineers before and after a female only summer enrichment program." Frontiers in Education Conference (FIE), 2011. IEEE, 2011.

Ing, Marsha; Aschbacher, Pamela R.; and Tsai, Sherry M. (2014) "Gender Differences in the Consistency of Middle School Students’ Interest in Engineering and Science Careers," Journal of Pre-College Engineering Education Research (J-PEER): Vol. 4: Iss. 2,

Jones, M. Gail, Ann Howe, and Melissa J. Rua. "Gender differences in students' experiences, interests, and attitudes toward science and scientists." Science education 84.2 (2000): 180-192.

Kurz, Mary Elizabeth, S. Elizabeth Yoder, and Ling Zu. "Effects of exposure on attitudes towards stem interests." Education 136.2 (2015): 229-241.

Leibham, Mary Beth, Joyce M. Alexander, and Kathy E. Johnson. "Science interests in preschool boys and girls: Relations to later self-concept and science achievement." Science Education 97.4 (2013): 574-593.

Pinder, Patrice Juliet, and Edith L. Blackwell. "The "black girl turn" in research on gender, race, and science education: Toward exploring and understanding the early experiences of black females in science, a literature review." Journal of African American Studies 18.1 (2014): 63-71.

Sadler, Philip M., et al. "Stability and volatility of STEM career interest in high school: A gender study." Science Education 96.3 (2012): 411-427.

Salmon, Aliénor. "A Complex Formula: Girls and Women in Science, Technology, Engineering and Mathematics in Asia." UNESCO Bangkok(2015).

Schnittka, Jessica and Schnittka, Christine (2016) ""Can I drop it this time?" Gender and Collaborative Group Dynamics in an Engineering Design-Based Afterschool Program," Journal of Pre-College Engineering Education Research (J-PEER): Vol. 6: Iss. 2, Article 1

Sjøberg, Svein. "Science and scientists: the SAS-study: cross-cultural evidence perspectives on pupils' interests, experiences and perceptions: background, development and selected results." Acta didactica http://urn. nb. no/URN: NBN: no-14449 (2000).

Sullivan, Amanda, and Marina Umaschi Bers. "Robotics in the early childhood classroom: learning outcomes from an 8-week robotics curriculum in pre-kindergarten through second grade." International Journal of Technology and Design Education 26.1 (2016): 3-20.

Tandogan, Ruhan Ozkardes, and Akinoglu Orhan. "The Effects of Problem-Based Active Learning in Science Education on Students' Academic Achievement, Attitude and Concept Learning." Online Submission 3.1 (2007): 71-81.

Welch, Anita, and Douglas Huffman. "The effect of robotics competitions on high school students' attitudes toward science." School Science and Mathematics 111.8 (2011): 416-424.

Wyss, Vanessa L., Diane Heulskamp, and Cathy J. Siebert. "Increasing middle school student interest in STEM careers with videos of scientists." International Journal of Environmental and Science Education 7.4 (2012): 501-522.

Appendix \#1:

Sample of "STEM Attitudes"

Survey

STEM Attitudes Survey

1. What gate did you enter through todayMark only one oval.
Zelzah Teacher Parking Lot
Service Road East (Boy's P.E. Side)
Hiawatha Lot (P. E. Field)
Service Road West (Girl's P.E. Side)
J Gate
(Kingsbury (Main Gate)
2. Grade
Mark only one oval.
(9
(0) 10
11
(12
3. Gender
Mark only one oval.
Female
Male
Other
4. Ethnicity (Please check all that Apply)
Check all that apply.
\square African American
\square American Indian
\square Asian American
Caucasian
\square Hispanic/ Latino
\square Mixed
Other:
5. How do you define STEM?

5. How do you define STEM?
\qquad
\qquad

Classes and Extracurricular Activities

6. Have you taken any AP Math or Computer Science courses (AP Calculus AB, AP Calculus BC, AP Statistics, AP Computer Science A or AP Computer Science principles
Mark only one oval.YesNo Skip to question 22

Calculus AB

7. Have you taken AP Calculus AB

Mark only one oval.YesNo Skip to question 10Currently

AP Calculus AB
8. What grade did you receive fall semester

Mark only one oval.

9. What grade did you receive Spring semester

Mark only one oval.

Calculus BC
10. Have you taken AP Calculus BC

Mark only one oval.YesNo Skip to question 13Currently Enroller Skip to question 13

AP Calculus BC
Select N/A if you are currently taking the course
11. What grade did you receive fall semester Mark only one oval.
12. What grade did you receive Spring semester Mark only one oval.
B
D

Computer Science A
13. Have you or are you taking AP Computer Science A Mark only one oval.YesNo Skip to question 16Currently Enrolled Skip to question 16.

AP Computer Science A
Select N/A if you are currently taking the course
14. What grade did you receive fall semester Mark only one oval.
B
C
D
F
15. What grade did you receive Spring semester Mark only one oval.

Computer Science Principles

16. Have you taken AP Computer Science Principles Mark only one oval.YesNo Skip to question 19Currently Enrolled Skip to question 19

AP Computer Science Principles
Select N/A if you are currently taking the course
17. What grade did you receive fall semester Mark only one oval.

18. What grade did you receive Spring semester Mark only one oval.
D
19. Have you taken AP Statistics

Mark only one oval.YesNo Skip to question 22Currently Enrolled Skip to question 22

AP Statistics
20. What grade did you receive fall semester

Mark only one oval.

21. What grade did you receive Spring semester

Mark only one oval.
Science
22. Have you taken any AP Science courses (Biology, Chemistry, Environmental Science, Physics) Mark only one oval.
YesNo Skip to question 41

Biology

23. Have you taken AP Biology

Mark only one oval.YesNo Skip to question 26Currently taking Skip to question 26.

AP Biology
24. What grade did you receive fall semester Mark only one oval.
A

25. What grade did you receive Spring semester Mark only one oval.
(C
\circlearrowleft_{F}

Environmental Science

26. Have you taken AP Environmental Science Mark only one oval.YesNo Skip to question 29.Currently taking Skip to question 29.

AP Environmental Science

27. What grade did you receive fall semester

Mark only one oval.
B
(B) F
28. What grade did you receive Spring semester Mark only one oval.

Chemistry

29. Have you taken AP Chemistry Mark only one oval.YesNo Skip to question 32Currently taking Skip to question 32

AP Chemistry
30. What grade did you receive fall semester Mark only one oval.

31. What grade did you receive Spring semester Mark only one oval.

Physics C
32. Have you taken AP Physics C Mark only one oval.YesNo Skip to question 35 .Currently taking Skip to question 35.

AP Physics C
33. What grade did you receive fall semester

Mark only one oval.

34. What grade did you receive Spring semeste Mark only one oval.

Physics 1
35. Have you taken AP Physics 1: Algebra Based Mark only one oval.YesNo Skip to question 38.Currently taking Skip to question 38 .

AP Physics 1: Algebra Based
36. What grade did you receive fall semester Mark only one oval.
D
F
37. What grade did you receive Spring semester Mark only one oval.

Physics 2
38. Have you taken AP Physics 2: Algebra Based Mark only one oval.YesNo Skip to question 41.
Currently taking Skip to question 41.

AP Physics 2: Algebra Based
39. What grade did you receive fall semester Mark only one oval.
B

40. What grade did you receive Spring semester Mark only one oval.

Activities
41. Are you involved in any STEM related extracurricular activities ? Mark only one oval.YesNo Skip to question 48

Extracurriculars

42. If yes, what activity (1)
43. If yes, how long? (1)

Mark only one oval.
44. If yes, what activity (2)
45. If yes, how long? (2)

Mark only one oval.1 year2 years3 years4 years5 years6 years7 years8 years9 years10 or more years
46. If yes, what activity (3)1 year 2 years3 years4 years5 years6 years7 years8 years9 years
10 or more years

Career Perceptions

48. To me, a career curing disease is:

Mark only one oval.

49. To me, a career helping sick people: Mark only one oval.

50. To me, a career making robots is:

Mark only one oval.

51. To me, a career working to make new games for computers is: Mark only one oval.

52. To me, a career helping send people to space is : Mark only one oval.

53. To me, a career designing bridges is :

Mark only one oval.

54. To me, a career designing cars is:

Mark only one oval.

	1	2	3	4	5
Boring	\square	\square	\square	\square	\square
Interesting					

55. To me, a career teaching Math is: Mark only one oval.

56. To me a career in science, technology, engineering, and math (is): Mark only one oval.

57. To me a career in science, technology, engineering, and math (is): Mark only one oval.

	1	2	3	4	5	
Boring	\square	\square	\square	\square	\square	Interesting

58. To me a career in science, technology, engineering, and math (is): Mark only one oval.

59. To me a career in science, technology, engineering, and math (is): Mark only one oval.

Mundane
 Fascinating
60. To me a career in science, technology, engineering, and math (is): Mark only one oval.

Interests:

Personally, what are you interested
61. Curing disease is something I would: Mark only one oval.

62. Helping sick people I would:

Mark only one oval.

63. Making robots is something I would:

Mark only one oval.

Hate to do
 Love to do
64. Making new games for computers is something I would: Mark only one oval.

65. Sending people to space is something I would: Mark only one oval.

Hate to do

66. Designing bridges is something I would:

Mark only one oval.

Hate to do
 Love to do
67. Designing cars is something I would: Mark only one oval.

68. Teaching math is something I would: Mark only one oval.

Hate to do
 Love to do

Out-of-School Experiences

 Used electric toys Charged a car battery or other batteriesPlanted and watched seeds grow
Observed or Studied the Milky Way or constellations of stars
Used a saw
Used an air gun or rifle
Used a rope and pulleys for lifting heavy things
Mended a bicycle tire
Made bread or pastry
Used a microscope
Participated in Science groups/ clubs/ camps
Charged a fuse or attached electric lead to plug Read/Watched non-fiction science Made your own clothes Studied the inside of a radio, TV, video, or similar Watched a bird make a nest
Played with electric batteries and bulbs or motors Participated in science/math competition(s) Chopped wood or collected firewood
Made a cart of wheelbarrow
Wrote computer programs or designed web pages
Read/Watched science fiction
Made bow and arrows, sling, catapult, or boomerang
Played computer/video games
Talked with friends or family about science
Knitted, or made baskets or mats
Used a car jack or changed tires on a car
Weaved cloth and textiles

Learning Interests

70. Check the topics that look interesting to you Check all that apply.

Electricity, how it is produced and used in the home
The rainbow, what it is, and why you can see itWhat we should eat to be healthy
Light and optics
What are colors and how do we see different colors
Why birds and planes can fly
Latest developments in technology
What an atomic bomb consists of and how they are made
How scientists think and work
Important inventions and discoveries
New sources of energy from the sun, wind, ect Clouds, rain, and snow How nuclear power plants functions

The car and how it works
Chemicals and their properties
Rockets and space travel
Computers, PCs, and what we can do with them
Sounds and music from birds and other animals
X-rays and ultrasound in medicine
Dinosaurs and why they died out
AIDS: What it is and how it spreads
How radioactivity affect life and the body
Atoms and molecules
How birds and animals communicate

Perceptions of Science

71. When you think of "science", what comes to mind? Check all that apply.

Important for SocietyDoing experiments
Interesting and ExcitingBoringDestructive and dangerousCreates problems for society
Most suitable for boysDifficult to understand
Creates pollution
Power
Useful in everyday life
Easy to understand
Helping the poor

Appendix \#2:

Data Collected as Presented in Excel

Question 6	Question 7	Question 8
	5	3
	3	1
	5	2
	5	3
	5	3
	4	2
	3	2
	4	
	1	1
	5	4
	2	1
	2	1
	5	2
	5	1
	4	2
	5	5
	2	2
	5	4
	5	5
	4	4
	5	2
	5	5
	5	3
	5	5
	3	3
	2	1
	4	3
	4	4

Science Intere 3 5 2 5 4 3 3 4 1 5 5 4 4 5 4 3 2 5 5 3 3 5 5 4 3 2 4 3

Question 13
3
1
5
4
4
1
1
2
2
2
5
5
2
4
4
1
1
4
4
4
4
4
5
5
5
3
2

$\begin{array}{cc}\text { Technologhy Interests } & \text { Question } 14 \\ 4 & 7 \\ 2 & 3 \\ 5 & 10 \\ 3 & 7 \\ 5 & 10 \\ 3 & 4 \\ 2 & 4 \\ 4 & 6 \\ 2 & 4 \\ 5 & 10 \\ 4 & 9 \\ 4 & 6 \\ 5 & 9 \\ 4 & 8 \\ 1 & 2 \\ 1 & 2 \\ 4 & 8 \\ 4 & 8 \\ 3 & 7 \\ 3 & 7 \\ 5 & 9 \\ 5 & 10 \\ 5 & 10 \\ 4 & 9 \\ 3 & 6 \\ 2 & 4 \\ 3 & 7 \\ 5 & 10\end{array}$

\qquad 3
2
2
4
5
2

No

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Currently Enrolled \& A \& B \& \& \& No \& No

\hline \multicolumn{7}{|l|}{Currently Enrolled}

\hline No \& B \& B \& B \& B \& No \& Yes

\hline No \& A \& B \& B \& A \& No \& Yes

\hline \multicolumn{7}{|l|}{No}

\hline \multicolumn{7}{|l|}{Yes}

\hline Currently Enrolled \& A \& A \& A \& A \& Yes \& Yes

\hline No \& в \& A \& A \& A \& Yes \& Yes

\hline No \& A \& A \& A \& A \& Yes \& Yes

\hline No \& A \& B \& \& \& No \& No

\hline \multicolumn{7}{|l|}{No}

\hline \multirow[t]{2}{*}{No

No} \& A \& A \& \& \& No \& Yes

\hline \& \& \& A \& A \& Yes \& Yes

\hline \multicolumn{7}{|l|}{No}

\hline No \& A \& B \& \& \& No \& No

\hline \multirow[t]{3}{*}{No} \& A \& A \& \& \& No \& Yes

\hline \& \& \& \& \& Currently taking \& No

\hline \& \& \& \& \& No \& No

\hline
\end{tabular}

No
No

Currently Enrolled	A	A	A	A	No	No
					No	No
Yes	B	B			No	No
No	A	A	A	A	Yes	Yes
No	в	B			No	No
					No	No
Yes	c	B			No	No
					No	No
					No	No
					No	No
Currently Enrolled	B				Yes	No

Currently Enrolled
Currently Enrolled
Yes
Currently Enrolled

No

No

Yes

No

No
No
No
No
No
No
No

Currently taking
No
No
No
No
Yes

No	Yes	No
Currently taking	Yes	No
No	Yes	No
No	No	No
No	Currently taking	No
No		
	No	No

Currently taking
No
No
No
No
Currently taking
Currently taking
No

No
No
No
$\begin{array}{lll}\text { No } & \text { B } & \text { B } \\ \text { No } & \text { B } & \text { A } \\ \text { No } & \text { A } & \text { A } \\ \text { No } & & \end{array}$
No

Yes Yes
 Yes Yes Yes No

$\begin{array}{ll}\text { C } & \text { C } \\ \text { C } & \text { B } \\ \text { A } & \text { B } \\ & \\ \text { A } & \text { A } \\ \text { B } & \text { A } \\ \text { A } & \text { A } \\ \text { A } & \text { A }\end{array}$

No
No
No
No
Currently taking
Yes
Currently taking
Currently taking

No

No
Yes

