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1. INTRODUCTION 

In quantitative uncertainty analysis, it is essential to define rigorously the endpoint or target of the 
assessment. Two distinctly different approaches using Monte Carlo methods are discussed: (1) the 
end point is a fixed but unknown value (e.g., the maximally exposed individual, the average 
individual, or a specific individual) or (2) the end point is an unknown distribution of values (e.g., 
the variability of exposures among unspecified individuals in the population). In the first case, 
values are sampled at random from distributions representing various “degrees of belief” about 
the unknown “fixed” values of the parameters to produce a distribution of model results. The 
distribution of model results represents a subjective confidence statement about the true but un- 
known assessment end point. The important input parameters are those that contribute most to the 
spread in the distribution of the model results. In the second case, Monte Carlo calculations are 
performed in two dimensions producing numerous alternative representations of the true but un- 
known distribution. These alternative distributions permit subject confidence statements to be made 
from two perspectives: (1) for the individual exposure occurring at a specified fractile of the 
distribution or (2) for the fractile of the distribution associated with a specified level of individual 
exposure. The relative importance of input parameters will depend on the fractile or exposure level 
of interest. The quantification of uncertainty for the simulation of a true but unknown distribution 
of values represents the state-of-the-art in assessment modeling. 

KEY WORDS Uncertainty; variability; lack of knowledge; Monte Carlo methods. 

contain a formal analysis of uncertainty. An uncertainty 
analysis, if performed at all, is usually restricted to a 
qualitative statement of confidence in the result; for in- 
stance, uncertainty in the point estimate that is less than 
one order of magnitude (a factor of 10) is considered 
 low,^' uncertainty in the point estimate greater than one 
order of magnitude but less than two orders of magni- 
tude (a factor of 100) is considered “moderate,” and 
uncertainty that exceeds two orders of magnitude is con- 
sidered “high.”@) Unfortunately, these qualitative state- 
ments of uncertainty are difficult to assess, let alone 
defend, particularly when the assessment involves po- 
tential exposure to several contaminants transferred over 
a number of different pathways. 

Present-day risk assessments for Superfund sites are 
generally conducted by using point estimates for param- 
eter values and applying these values in an additive se- 
ries of multiplicative equations>8) These calculations are 
designed to produce a reasonable approximation of ex- 
posure and health risk (probability of a harmful effect) 
to a maximally exposed individual. Although the sever- 
ity of the risk is defined numerically, few risk assess- 
ments performed in support of Superfund regulations 
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708 Hoffman and Hammonds 

A more defensible approach is to perform a quan- 
titative analysis of uncertainty using either analytical or 
numerical techniques to propagate uncertainty in the 
components of the risk assessment equations into an as- 
sessment of uncertainty in the overall result. However, 
the manner in which these techniques are applied and 
interpreted will vary depending on the definition of the 
assessment endpoint (i.e., the target of the assessment 
question). 

For any given risk assessment, the definition of the 
assessment end point is critical. This definition deter- 
mines the relevancy of available data, the individuals or 
populations at risk, and whether or not it is necessary to 
distinguish between probabilistic statements about the 
variability of risks among individuals and uncertainty 
due to lack of knowledge about fixed but unknown 
quantities. 

2. The Distinction Between Variability and 
Uncertainty: Type A Versus Type B Uncertainty 

If the assessment end point is a fixed quantity (such 
as the risk to a specific individual, a maximally exposed 
individual, or an average individual of a specific popu- 
lation subgroup), the uncertainty analysis provides a 
statement of confidence that the true quantity will be 
within certain limits. The probability distribution ob- 
tained from uncertainty analyses using Monte Carlo sim- 
ulation represents a range of “degrees of belief” that 
the true but unknown value is equal to or less than any 
value selected from the distribution (Fig. 1). This state- 
ment of confidence accounts for multiple sources of un- 
certainty, including uncertainty associated with the 
model structure and the presence, variability, and rep- 
resentativeness of data. Uncertainty about a quantity that 
is fixed (or deterministic) with respect to the assessment 
end point is called Type B uncertainty in Safety Series 
No. 100 of the IAEA.@) When the assessment end point 
is a fixed quantity, distributions of values obtained from 
repeated observations represent uncertainty of Type B 
because the “true” value is still an unknown quantity. 
The observations can be used to construct a confidence 
interval for which there is a given percent chance of 
bounding the true value. 

Recently, EPA has been requesting that risk as- 
sessments target the upper 95th percentile of a popula- 
tion of potentially exposed individualsJg) This request 
requires simulation of the distribution of actual individ- 
ual exposures or risks in the population. When the as- 
sessment end point is a distribution of actual exposures 
or risks (but the exposure to specific individuals in the 

MODEL OUTPUT R = f(X,Y,Z) 

R 

Fig. 1. Use of a Monte Carlo approach to estimate Type B uncertainty 
when the assessment end point is a fmed but unknown quantity. 

population remains unknown), the uncertainty is of Type 
A.@) However, the true mean, variance, and shape of this 
distribution are “fixed” with respect to the assessment 
end point. If these quantities are unknown, uncertainty 
of Type B is also present. 

When the assessment end point is a distribution of 
actual exposures or risks, it is necessary to make dis- 
tinctions between Type A and Type B uncertainties. 
Such a distinction permits a confidence interval to be 
estimated for the true 95th percentile of a potentially 
exposed population (or for any other fractile of the true 
but unknown distribution of exposures or risks). 

To distinguish between Type A and Type B uncer- 
tainty, a Monte Carlo simulation must be applied in two 
dimensions. First, numerous sets of alternative values are 
obtained from marginal probability density functions 
(PDFu’s) representing subjective degrees of belief about 
quantities that are fixed but unknown with respect to the 
assessment end point. Fixed quantities include parame- 
ters that do not vary with the assessment end point, such 
as the total amount of the contaminant released. Fixed 
quantities also include the mean, variance, and shape of 
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ASSESSMENT WITH AN ENDPOINT THAT is A D i s T R i w n m  OF ACTUAL ~NDIV~WAL EXPOSURES OR RISKS 

EXAMPLE: Distribution of risks to unmpuifkd indlvlduis in a popuhtlon 

Parameter X: Source Term parameter that is fixed but unknown 
Parameter Y': Environmental Transport parameter that varies per exposed indivkhl 
Parameter T: Dosimetric and risk conversion parameter hat varies per exposed individual 

OFTYPE A ANUYPE B UNCERTUNTY , I  I ,  

Parameter x Parameter Y' Parameter T 
Family d A~IuMIIvE DYributbm Family d A l I ~ ~ l l v e  DYributbm 

X Y' T 
True value of X unknown: TYPE '8' 

Random Sampling (1 value 
for each simulation) 

Y' and Z am TYPE 'X, but h e  true distributions for these parameters are unknown: 
The mean and standard deviation that are unique to each alternative distribution are 
themselves sampled from TYPE B PDF's. representing subiedii degees of belief about 
h e  true but unknown mean and standard deviation for the unlmown Irue dstribubon. 

I 

i 
Parameter x 

chomnvalueo 

X I 
FAMILY OF ALTERNATIVE DISTRIBUTIONS 

Fig. 2. Use of a Monte Carlo approach to distinguish between Type A and Type B uncertainty when the assessment end point is a true but 
unknown distribution of values representing variability among unspecified individuals in an exposed population. 

those parameter distributions that describe variability 
among individuals, as well as values that describe cor- 
relations among these parameters. The alternative sets of 
fixed values represent Type B uncertainty. 

Second, for each alternative set of fixed values, 
Monte Carlo procedures are used to simulate alternative 
distributions of parameter values (marginal PDF,'s) that 
determine alternative expressions of the variability of in- 

dividual risks (joint PDF,'s), each with its own unique 
mean, variance, and shape (Fig. 2). Each of these joint 
PDF,'s is thus an alternative representation of Type A 
uncertainty. The entire set of alternative distributions 
represents Type B uncertainty due to the fact that the 
true distribution is unknown. The alternative distribu- 
tions are used to obtain subjective confidence intervals 
for the unknown risk at any given fractile. Subjective 
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TWO m P m A n o N s  FOR MTEFWATIVE REALIZATIONS OF ASSESSMENT 
ENDPONlS REPRESENTNG TYPE 'A' UycERTAlMy 

TYPE 'B' uncut.inly if th. nlinute of th. Wuo m n n  dou b of i n t m t  @ 

r 

Whsm R - f(X. Y, 2') 

@ TYPE 'B' uncrt.inly if th. nlinub of th. fnm dhbibuibn b of inlsmd 

Central Estimated CCDF and Canf!dance IntONd 

L 

A 
a 
z 

r r 

Fig. 3. Numerous alternative distributions produced through Monte Carlo simulation of Type A and Type B uncertainty can be used to derive 
confidence intervals for the mean value and any fractile of the true but unknown distribution. 

confidence intervals can also be obtained for the un- 
known fractile at any given value of risk (Fig. 3). The 
order of importance for the parameters that contribute 
most to the confidence interval for a fractile will depend 
on the fractile of interest.@) Additional readings on this 
issue can be obtained from a number of a~thors . ( ' .~~ .~)  

Example 

I t  should be noted that the example presented in 
this paper is entirely hypothetical and is for demonstra- 
tion purposes only. 

Let us assume that there has been an accidental spill 
of mercury in a small lake. The problem is to determine 
the Hazard Quotient (Ha) for the upper 95th percentile 
of the population of potentially exposed individuals from 
the ingestion of contaminated fish. Table I provides in- 
formation required to solve this problem. 

Solution 

For this problem, we use a simplified form of an 
equation presented in the EPA Superfund guidelines for 
human health risk assessment:@) 

HQ = C, X I X (BM)-I (RfD)-' 

where 
HQ = the Hazard Quotient (unitless) 
C, = the concentration of the contaminant in fish 

I = the ingestion rate of fish after consideration 
of the exposure duration, exposure fre- 
quency, and averaging time (kg/day) 

( m a g )  

BM = the body mass of the human (kg) 
RfD = the chemical-specific reference dose (mgkg- 

day) 
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Table I. Information About the Variability (Type A) and Uncertainty (Type B) of the Model Parameters Required to Solve the Example 
Problem 

Parameter Cf (m@g) I (kdday) BM (kg) 

RfD 
Type A Dist. Iog-Nomal log-Normal Truncated normala 

Mean STDEV Mean STDEV Mean STDEV (rngkg-day) 
~~ ~~~~ ~ _ _ _ _ _ _  

Type J3 Dist. Triangle Triangle Triangle Triangle Triangle Triangle IOg-Tri. 
Mio. 5.00E-2 2.50E-2 2.00E-2 2.20E-03 60 7 9.50E-5 
Mode 7.10E-2 3.43E-2 6.5OE-2 2.80E-03 70 10 3.00E-4 
Max. 1.00E-1 5.00E-2 1.30E-1 4.40E-03 90 14 3.00E-3 

Truncated at zero. 

When the assessment end point is the 95th percen- 
tile of the exposed population, the variability of the 
mean concentration of the contaminant in fish and of the 
body mass and the daily ingestion rate for each exposed 
individual must be considered (Type A). Type B uncer- 
tainty also exists because the true values of the means 
and standard deviations of these three assessment param- 
eters are unknown. In this example, the RfD for mercury 
is assumed not to vary from individual to individual; 
therefore, only Type B uncertainty is considered in this 
parameter. 

The first step is to express uncertainty associated 
with the unknown values for the deterministic or non- 
varying quantities (Type B uncertainty). A log-triangular 
distribution was assigned to represent the uncertainty 
(due to lack of knowledge) about the true but unknown 
value of the RfD (Table I). Triangular distributions were 
assigned to the unknown means and standard deviations 
used to describe the stochastically varying parameters C, 
BM, and I. From these distributions that represent Type 
B uncertainty, 59 values of the reference dose and 59 
values of the means and standard deviations of C, BM, 
and I were obtained using simple random sampling 
(SRS) in a Monte Carlo simulation. 

The stochastic variability in C ,  I, and BM are de- 
termined by the values of the means and standard de- 
viations that define the Type A distributions that are 
relevant to variability in the assessment end point (Table 
I). From each of the Type A distributions for C, I, and 
BM, one value is obtained using Latin hypercube sam- 
pling (LHS). These values are then combined with one 
of the 59 values selected for the RfD to simulate one 
value for the HQ for mercury ingestion. This process is 
repeated 100 times, without changing the value for the 
RfD or the values for the mean and standard deviation 
describing Type A uncertainty in each of the three pa- 
rameters. Thus, a single Type A distribution (a joint 
PDF,) is produced which is composed of 100 values 

representing the HQ for individuals randomly selected 
from an exposed population. 

Next, a new value is obtained from the 59 random 
values selected for the RfD; new values are also obtained 
for the mean and standard deviation of C, BM, and I; 
and another distinct set of 100 results is produced rep- 
resenting an alternative set of values of HQ for an al- 
ternative set of individuals randomly selected from an 
exposed population. This process is repeated until there 
are 59 unique Type A distributions, each composed of 
100 values representing alternative expressions of the 
variability of HQ among individuals in an exposed pop- 
ulation (Fig. 4). With 59 alternative representations of a 
true but unknown distribution of HQ, it is possible to 
obtain a subjective confidence interval at any fractile of 
interest. For this example, the 90% subjective confidence 
interval for the HQ occurring at the 95th percentile of 
the population is 0.14 to 1.10 (Fig. 4). [End of example.] 

In the example below, the 90% subjective confi- 
dence interval was conservatively estimated using statis- 
tical tolerance limits.z6 Based on the minimum and 
maximum values obtained from the 59 simulations of 

i 

0001 ' I 

01 1 i 5 10 20 30 50 ro 80 90 95 99 999  9999 

CUMULATIVE PROBABILITY 

Fig. 4. Presentation of results from an uncertainty analysis 
containing Type A and Type B uncertainty. 
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the 95th percentile of the HQ. This relatively small sam- 
ple size was used for computational convenience. This 
method provides a distribution-free statistical tolerance 
limit in which there is 95% confidence that the minimum 
and maximum values from an SRS of 59 are not under- 
estimates of the 90% subjective confidence interval that 
would have been obtained using a much larger sample 
size (many thousands). This statistical tolerance limit is 
independent of the number of uncertain parameters in 
the model.@) An alternative approach would be to use a 
much larger sample size to produce a very large number 
of alternative realizations of the Type A distribution for 
HQ. In this case, the 90% subjective confidence interval 
for the HQ occurring at the 95th percentile of the pop- 
ulation would be obtained from a large distribution of 
values representing Type B uncertainty for the true but 
unknown distribution of HQ. 

the true distribution of values the model is simulating. 
The quantification of uncertainty for the simulation of a 
true but unknown distribution of values represents the 
state- of- the- art in assessment modeling. 
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